aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/ath5k/eeprom.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless/ath/ath5k/eeprom.c')
-rw-r--r--drivers/net/wireless/ath/ath5k/eeprom.c1802
1 files changed, 1802 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath/ath5k/eeprom.c b/drivers/net/wireless/ath/ath5k/eeprom.c
new file mode 100644
index 00000000000..c56b494d417
--- /dev/null
+++ b/drivers/net/wireless/ath/ath5k/eeprom.c
@@ -0,0 +1,1802 @@
+/*
+ * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
+ * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
+ * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+/*************************************\
+* EEPROM access functions and helpers *
+\*************************************/
+
+#include "ath5k.h"
+#include "reg.h"
+#include "debug.h"
+#include "base.h"
+
+/*
+ * Read from eeprom
+ */
+static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
+{
+ u32 status, timeout;
+
+ ATH5K_TRACE(ah->ah_sc);
+ /*
+ * Initialize EEPROM access
+ */
+ if (ah->ah_version == AR5K_AR5210) {
+ AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
+ (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
+ } else {
+ ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
+ AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
+ AR5K_EEPROM_CMD_READ);
+ }
+
+ for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
+ status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
+ if (status & AR5K_EEPROM_STAT_RDDONE) {
+ if (status & AR5K_EEPROM_STAT_RDERR)
+ return -EIO;
+ *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
+ 0xffff);
+ return 0;
+ }
+ udelay(15);
+ }
+
+ return -ETIMEDOUT;
+}
+
+/*
+ * Translate binary channel representation in EEPROM to frequency
+ */
+static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
+ unsigned int mode)
+{
+ u16 val;
+
+ if (bin == AR5K_EEPROM_CHANNEL_DIS)
+ return bin;
+
+ if (mode == AR5K_EEPROM_MODE_11A) {
+ if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
+ val = (5 * bin) + 4800;
+ else
+ val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
+ (bin * 10) + 5100;
+ } else {
+ if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
+ val = bin + 2300;
+ else
+ val = bin + 2400;
+ }
+
+ return val;
+}
+
+/*
+ * Initialize eeprom & capabilities structs
+ */
+static int
+ath5k_eeprom_init_header(struct ath5k_hw *ah)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ int ret;
+ u16 val;
+
+ /*
+ * Read values from EEPROM and store them in the capability structure
+ */
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
+
+ /* Return if we have an old EEPROM */
+ if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
+ return 0;
+
+#ifdef notyet
+ /*
+ * Validate the checksum of the EEPROM date. There are some
+ * devices with invalid EEPROMs.
+ */
+ for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
+ AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
+ cksum ^= val;
+ }
+ if (cksum != AR5K_EEPROM_INFO_CKSUM) {
+ ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
+ return -EIO;
+ }
+#endif
+
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
+ ee_ant_gain);
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
+
+ /* XXX: Don't know which versions include these two */
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
+
+ if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
+
+ if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
+ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
+ }
+ }
+
+ if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
+ AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
+ ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
+ ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
+
+ AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
+ ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
+ ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
+ }
+
+ AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
+
+ if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
+ ee->ee_is_hb63 = true;
+ else
+ ee->ee_is_hb63 = false;
+
+ AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
+ ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
+ ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
+
+ return 0;
+}
+
+
+/*
+ * Read antenna infos from eeprom
+ */
+static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
+ unsigned int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ u32 o = *offset;
+ u16 val;
+ int ret, i = 0;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
+ ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
+ ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
+ ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
+ ee->ee_ant_control[mode][i++] = val & 0x3f;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
+ ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
+ ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
+ ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
+ ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
+ ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
+ ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
+ ee->ee_ant_control[mode][i++] = val & 0x3f;
+
+ /* Get antenna switch tables */
+ ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
+ (ee->ee_ant_control[mode][0] << 4);
+ ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
+ ee->ee_ant_control[mode][1] |
+ (ee->ee_ant_control[mode][2] << 6) |
+ (ee->ee_ant_control[mode][3] << 12) |
+ (ee->ee_ant_control[mode][4] << 18) |
+ (ee->ee_ant_control[mode][5] << 24);
+ ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
+ ee->ee_ant_control[mode][6] |
+ (ee->ee_ant_control[mode][7] << 6) |
+ (ee->ee_ant_control[mode][8] << 12) |
+ (ee->ee_ant_control[mode][9] << 18) |
+ (ee->ee_ant_control[mode][10] << 24);
+
+ /* return new offset */
+ *offset = o;
+
+ return 0;
+}
+
+/*
+ * Read supported modes and some mode-specific calibration data
+ * from eeprom
+ */
+static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
+ unsigned int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ u32 o = *offset;
+ u16 val;
+ int ret;
+
+ ee->ee_n_piers[mode] = 0;
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
+ switch(mode) {
+ case AR5K_EEPROM_MODE_11A:
+ ee->ee_ob[mode][3] = (val >> 5) & 0x7;
+ ee->ee_db[mode][3] = (val >> 2) & 0x7;
+ ee->ee_ob[mode][2] = (val << 1) & 0x7;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
+ ee->ee_db[mode][2] = (val >> 12) & 0x7;
+ ee->ee_ob[mode][1] = (val >> 9) & 0x7;
+ ee->ee_db[mode][1] = (val >> 6) & 0x7;
+ ee->ee_ob[mode][0] = (val >> 3) & 0x7;
+ ee->ee_db[mode][0] = val & 0x7;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ case AR5K_EEPROM_MODE_11B:
+ ee->ee_ob[mode][1] = (val >> 4) & 0x7;
+ ee->ee_db[mode][1] = val & 0x7;
+ break;
+ }
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
+ ee->ee_thr_62[mode] = val & 0xff;
+
+ if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
+ ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
+ ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
+
+ if ((val & 0xff) & 0x80)
+ ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
+ else
+ ee->ee_noise_floor_thr[mode] = val & 0xff;
+
+ if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
+ ee->ee_noise_floor_thr[mode] =
+ mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
+ ee->ee_x_gain[mode] = (val >> 1) & 0xf;
+ ee->ee_xpd[mode] = val & 0x1;
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
+ ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
+
+ if (mode == AR5K_EEPROM_MODE_11A)
+ ee->ee_xr_power[mode] = val & 0x3f;
+ else {
+ ee->ee_ob[mode][0] = val & 0x7;
+ ee->ee_db[mode][0] = (val >> 3) & 0x7;
+ }
+ }
+
+ if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
+ ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
+ ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
+ } else {
+ ee->ee_i_gain[mode] = (val >> 13) & 0x7;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_i_gain[mode] |= (val << 3) & 0x38;
+
+ if (mode == AR5K_EEPROM_MODE_11G) {
+ ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
+ ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
+ }
+ }
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
+ mode == AR5K_EEPROM_MODE_11A) {
+ ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
+ ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
+ }
+
+ if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
+ goto done;
+
+ /* Note: >= v5 have bg freq piers on another location
+ * so these freq piers are ignored for >= v5 (should be 0xff
+ * anyway) */
+ switch(mode) {
+ case AR5K_EEPROM_MODE_11A:
+ if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
+ break;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_margin_tx_rx[mode] = val & 0x3f;
+ break;
+ case AR5K_EEPROM_MODE_11B:
+ AR5K_EEPROM_READ(o++, val);
+
+ ee->ee_pwr_cal_b[0].freq =
+ ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
+ if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
+ ee->ee_n_piers[mode]++;
+
+ ee->ee_pwr_cal_b[1].freq =
+ ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
+ if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
+ ee->ee_n_piers[mode]++;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_pwr_cal_b[2].freq =
+ ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
+ if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
+ ee->ee_n_piers[mode]++;
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
+ ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ AR5K_EEPROM_READ(o++, val);
+
+ ee->ee_pwr_cal_g[0].freq =
+ ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
+ if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
+ ee->ee_n_piers[mode]++;
+
+ ee->ee_pwr_cal_g[1].freq =
+ ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
+ if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
+ ee->ee_n_piers[mode]++;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_turbo_max_power[mode] = val & 0x7f;
+ ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_pwr_cal_g[2].freq =
+ ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
+ if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
+ ee->ee_n_piers[mode]++;
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
+ ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
+
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
+ ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_cck_ofdm_gain_delta = val & 0xff;
+ }
+ break;
+ }
+
+done:
+ /* return new offset */
+ *offset = o;
+
+ return 0;
+}
+
+/*
+ * Read turbo mode information on newer EEPROM versions
+ */
+static int
+ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
+ u32 *offset, unsigned int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ u32 o = *offset;
+ u16 val;
+ int ret;
+
+ if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
+ return 0;
+
+ switch (mode){
+ case AR5K_EEPROM_MODE_11A:
+ ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
+
+ ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
+ ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
+
+ ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
+ ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
+
+ if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
+ ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
+
+ ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
+ ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
+
+ ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
+ AR5K_EEPROM_READ(o++, val);
+ ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
+ ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
+ break;
+ }
+
+ /* return new offset */
+ *offset = o;
+
+ return 0;
+}
+
+/* Read mode-specific data (except power calibration data) */
+static int
+ath5k_eeprom_init_modes(struct ath5k_hw *ah)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ u32 mode_offset[3];
+ unsigned int mode;
+ u32 offset;
+ int ret;
+
+ /*
+ * Get values for all modes
+ */
+ mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
+ mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
+ mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
+
+ ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
+ AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
+
+ for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
+ offset = mode_offset[mode];
+
+ ret = ath5k_eeprom_read_ants(ah, &offset, mode);
+ if (ret)
+ return ret;
+
+ ret = ath5k_eeprom_read_modes(ah, &offset, mode);
+ if (ret)
+ return ret;
+
+ ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
+ if (ret)
+ return ret;
+ }
+
+ /* override for older eeprom versions for better performance */
+ if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
+ ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
+ ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
+ ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
+ }
+
+ return 0;
+}
+
+/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
+ * frequency mask) */
+static inline int
+ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
+ struct ath5k_chan_pcal_info *pc, unsigned int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ int o = *offset;
+ int i = 0;
+ u8 freq1, freq2;
+ int ret;
+ u16 val;
+
+ ee->ee_n_piers[mode] = 0;
+ while(i < max) {
+ AR5K_EEPROM_READ(o++, val);
+
+ freq1 = val & 0xff;
+ if (!freq1)
+ break;
+
+ pc[i++].freq = ath5k_eeprom_bin2freq(ee,
+ freq1, mode);
+ ee->ee_n_piers[mode]++;
+
+ freq2 = (val >> 8) & 0xff;
+ if (!freq2)
+ break;
+
+ pc[i++].freq = ath5k_eeprom_bin2freq(ee,
+ freq2, mode);
+ ee->ee_n_piers[mode]++;
+ }
+
+ /* return new offset */
+ *offset = o;
+
+ return 0;
+}
+
+/* Read frequency piers for 802.11a */
+static int
+ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
+ int i, ret;
+ u16 val;
+ u8 mask;
+
+ if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
+ ath5k_eeprom_read_freq_list(ah, &offset,
+ AR5K_EEPROM_N_5GHZ_CHAN, pcal,
+ AR5K_EEPROM_MODE_11A);
+ } else {
+ mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcal[0].freq = (val >> 9) & mask;
+ pcal[1].freq = (val >> 2) & mask;
+ pcal[2].freq = (val << 5) & mask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcal[2].freq |= (val >> 11) & 0x1f;
+ pcal[3].freq = (val >> 4) & mask;
+ pcal[4].freq = (val << 3) & mask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcal[4].freq |= (val >> 13) & 0x7;
+ pcal[5].freq = (val >> 6) & mask;
+ pcal[6].freq = (val << 1) & mask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcal[6].freq |= (val >> 15) & 0x1;
+ pcal[7].freq = (val >> 8) & mask;
+ pcal[8].freq = (val >> 1) & mask;
+ pcal[9].freq = (val << 6) & mask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcal[9].freq |= (val >> 10) & 0x3f;
+
+ /* Fixed number of piers */
+ ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
+
+ for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
+ pcal[i].freq = ath5k_eeprom_bin2freq(ee,
+ pcal[i].freq, AR5K_EEPROM_MODE_11A);
+ }
+ }
+
+ return 0;
+}
+
+/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
+static inline int
+ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info *pcal;
+
+ switch(mode) {
+ case AR5K_EEPROM_MODE_11B:
+ pcal = ee->ee_pwr_cal_b;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ pcal = ee->ee_pwr_cal_g;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ath5k_eeprom_read_freq_list(ah, &offset,
+ AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
+ mode);
+
+ return 0;
+}
+
+/*
+ * Read power calibration for RF5111 chips
+ *
+ * For RF5111 we have an XPD -eXternal Power Detector- curve
+ * for each calibrated channel. Each curve has 0,5dB Power steps
+ * on x axis and PCDAC steps (offsets) on y axis and looks like an
+ * exponential function. To recreate the curve we read 11 points
+ * here and interpolate later.
+ */
+
+/* Used to match PCDAC steps with power values on RF5111 chips
+ * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
+ * steps that match with the power values we read from eeprom. On
+ * older eeprom versions (< 3.2) these steps are equaly spaced at
+ * 10% of the pcdac curve -until the curve reaches it's maximum-
+ * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
+ * these 11 steps are spaced in a different way. This function returns
+ * the pcdac steps based on eeprom version and curve min/max so that we
+ * can have pcdac/pwr points.
+ */
+static inline void
+ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
+{
+ static const u16 intercepts3[] =
+ { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
+ static const u16 intercepts3_2[] =
+ { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
+ const u16 *ip;
+ int i;
+
+ if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
+ ip = intercepts3_2;
+ else
+ ip = intercepts3;
+
+ for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
+ vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
+}
+
+/* Convert RF5111 specific data to generic raw data
+ * used by interpolation code */
+static int
+ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
+ struct ath5k_chan_pcal_info *chinfo)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info_rf5111 *pcinfo;
+ struct ath5k_pdgain_info *pd;
+ u8 pier, point, idx;
+ u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
+
+ /* Fill raw data for each calibration pier */
+ for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
+
+ pcinfo = &chinfo[pier].rf5111_info;
+
+ /* Allocate pd_curves for this cal pier */
+ chinfo[pier].pd_curves =
+ kcalloc(AR5K_EEPROM_N_PD_CURVES,
+ sizeof(struct ath5k_pdgain_info),
+ GFP_KERNEL);
+
+ if (!chinfo[pier].pd_curves)
+ return -ENOMEM;
+
+ /* Only one curve for RF5111
+ * find out which one and place
+ * in in pd_curves.
+ * Note: ee_x_gain is reversed here */
+ for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
+
+ if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
+ pdgain_idx[0] = idx;
+ break;
+ }
+ }
+
+ ee->ee_pd_gains[mode] = 1;
+
+ pd = &chinfo[pier].pd_curves[idx];
+
+ pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
+
+ /* Allocate pd points for this curve */
+ pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
+ sizeof(u8), GFP_KERNEL);
+ if (!pd->pd_step)
+ return -ENOMEM;
+
+ pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
+ sizeof(s16), GFP_KERNEL);
+ if (!pd->pd_pwr)
+ return -ENOMEM;
+
+ /* Fill raw dataset
+ * (convert power to 0.25dB units
+ * for RF5112 combatibility) */
+ for (point = 0; point < pd->pd_points; point++) {
+
+ /* Absolute values */
+ pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
+
+ /* Already sorted */
+ pd->pd_step[point] = pcinfo->pcdac[point];
+ }
+
+ /* Set min/max pwr */
+ chinfo[pier].min_pwr = pd->pd_pwr[0];
+ chinfo[pier].max_pwr = pd->pd_pwr[10];
+
+ }
+
+ return 0;
+}
+
+/* Parse EEPROM data */
+static int
+ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info *pcal;
+ int offset, ret;
+ int i;
+ u16 val;
+
+ offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
+ switch(mode) {
+ case AR5K_EEPROM_MODE_11A:
+ if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
+ return 0;
+
+ ret = ath5k_eeprom_init_11a_pcal_freq(ah,
+ offset + AR5K_EEPROM_GROUP1_OFFSET);
+ if (ret < 0)
+ return ret;
+
+ offset += AR5K_EEPROM_GROUP2_OFFSET;
+ pcal = ee->ee_pwr_cal_a;
+ break;
+ case AR5K_EEPROM_MODE_11B:
+ if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
+ !AR5K_EEPROM_HDR_11G(ee->ee_header))
+ return 0;
+
+ pcal = ee->ee_pwr_cal_b;
+ offset += AR5K_EEPROM_GROUP3_OFFSET;
+
+ /* fixed piers */
+ pcal[0].freq = 2412;
+ pcal[1].freq = 2447;
+ pcal[2].freq = 2484;
+ ee->ee_n_piers[mode] = 3;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
+ return 0;
+
+ pcal = ee->ee_pwr_cal_g;
+ offset += AR5K_EEPROM_GROUP4_OFFSET;
+
+ /* fixed piers */
+ pcal[0].freq = 2312;
+ pcal[1].freq = 2412;
+ pcal[2].freq = 2484;
+ ee->ee_n_piers[mode] = 3;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ for (i = 0; i < ee->ee_n_piers[mode]; i++) {
+ struct ath5k_chan_pcal_info_rf5111 *cdata =
+ &pcal[i].rf5111_info;
+
+ AR5K_EEPROM_READ(offset++, val);
+ cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
+ cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
+ cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
+
+ AR5K_EEPROM_READ(offset++, val);
+ cdata->pwr[0] |= ((val >> 14) & 0x3);
+ cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
+ cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
+ cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
+
+ AR5K_EEPROM_READ(offset++, val);
+ cdata->pwr[3] |= ((val >> 12) & 0xf);
+ cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
+ cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
+
+ AR5K_EEPROM_READ(offset++, val);
+ cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
+ cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
+ cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
+
+ AR5K_EEPROM_READ(offset++, val);
+ cdata->pwr[8] |= ((val >> 14) & 0x3);
+ cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
+ cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
+
+ ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
+ cdata->pcdac_max, cdata->pcdac);
+ }
+
+ return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
+}
+
+
+/*
+ * Read power calibration for RF5112 chips
+ *
+ * For RF5112 we have 4 XPD -eXternal Power Detector- curves
+ * for each calibrated channel on 0, -6, -12 and -18dbm but we only
+ * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
+ * power steps on x axis and PCDAC steps on y axis and looks like a
+ * linear function. To recreate the curve and pass the power values
+ * on hw, we read 4 points for xpd 0 (lower gain -> max power)
+ * and 3 points for xpd 3 (higher gain -> lower power) here and
+ * interpolate later.
+ *
+ * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
+ */
+
+/* Convert RF5112 specific data to generic raw data
+ * used by interpolation code */
+static int
+ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
+ struct ath5k_chan_pcal_info *chinfo)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info_rf5112 *pcinfo;
+ u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
+ unsigned int pier, pdg, point;
+
+ /* Fill raw data for each calibration pier */
+ for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
+
+ pcinfo = &chinfo[pier].rf5112_info;
+
+ /* Allocate pd_curves for this cal pier */
+ chinfo[pier].pd_curves =
+ kcalloc(AR5K_EEPROM_N_PD_CURVES,
+ sizeof(struct ath5k_pdgain_info),
+ GFP_KERNEL);
+
+ if (!chinfo[pier].pd_curves)
+ return -ENOMEM;
+
+ /* Fill pd_curves */
+ for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
+
+ u8 idx = pdgain_idx[pdg];
+ struct ath5k_pdgain_info *pd =
+ &chinfo[pier].pd_curves[idx];
+
+ /* Lowest gain curve (max power) */
+ if (pdg == 0) {
+ /* One more point for better accuracy */
+ pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
+
+ /* Allocate pd points for this curve */
+ pd->pd_step = kcalloc(pd->pd_points,
+ sizeof(u8), GFP_KERNEL);
+
+ if (!pd->pd_step)
+ return -ENOMEM;
+
+ pd->pd_pwr = kcalloc(pd->pd_points,
+ sizeof(s16), GFP_KERNEL);
+
+ if (!pd->pd_pwr)
+ return -ENOMEM;
+
+
+ /* Fill raw dataset
+ * (all power levels are in 0.25dB units) */
+ pd->pd_step[0] = pcinfo->pcdac_x0[0];
+ pd->pd_pwr[0] = pcinfo->pwr_x0[0];
+
+ for (point = 1; point < pd->pd_points;
+ point++) {
+ /* Absolute values */
+ pd->pd_pwr[point] =
+ pcinfo->pwr_x0[point];
+
+ /* Deltas */
+ pd->pd_step[point] =
+ pd->pd_step[point - 1] +
+ pcinfo->pcdac_x0[point];
+ }
+
+ /* Set min power for this frequency */
+ chinfo[pier].min_pwr = pd->pd_pwr[0];
+
+ /* Highest gain curve (min power) */
+ } else if (pdg == 1) {
+
+ pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
+
+ /* Allocate pd points for this curve */
+ pd->pd_step = kcalloc(pd->pd_points,
+ sizeof(u8), GFP_KERNEL);
+
+ if (!pd->pd_step)
+ return -ENOMEM;
+
+ pd->pd_pwr = kcalloc(pd->pd_points,
+ sizeof(s16), GFP_KERNEL);
+
+ if (!pd->pd_pwr)
+ return -ENOMEM;
+
+ /* Fill raw dataset
+ * (all power levels are in 0.25dB units) */
+ for (point = 0; point < pd->pd_points;
+ point++) {
+ /* Absolute values */
+ pd->pd_pwr[point] =
+ pcinfo->pwr_x3[point];
+
+ /* Fixed points */
+ pd->pd_step[point] =
+ pcinfo->pcdac_x3[point];
+ }
+
+ /* Since we have a higher gain curve
+ * override min power */
+ chinfo[pier].min_pwr = pd->pd_pwr[0];
+ }
+ }
+ }
+
+ return 0;
+}
+
+/* Parse EEPROM data */
+static int
+ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
+ struct ath5k_chan_pcal_info *gen_chan_info;
+ u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
+ u32 offset;
+ u8 i, c;
+ u16 val;
+ int ret;
+ u8 pd_gains = 0;
+
+ /* Count how many curves we have and
+ * identify them (which one of the 4
+ * available curves we have on each count).
+ * Curves are stored from lower (x0) to
+ * higher (x3) gain */
+ for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
+ /* ee_x_gain[mode] is x gain mask */
+ if ((ee->ee_x_gain[mode] >> i) & 0x1)
+ pdgain_idx[pd_gains++] = i;
+ }
+ ee->ee_pd_gains[mode] = pd_gains;
+
+ if (pd_gains == 0 || pd_gains > 2)
+ return -EINVAL;
+
+ switch (mode) {
+ case AR5K_EEPROM_MODE_11A:
+ /*
+ * Read 5GHz EEPROM channels
+ */
+ offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
+ ath5k_eeprom_init_11a_pcal_freq(ah, offset);
+
+ offset += AR5K_EEPROM_GROUP2_OFFSET;
+ gen_chan_info = ee->ee_pwr_cal_a;
+ break;
+ case AR5K_EEPROM_MODE_11B:
+ offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
+ if (AR5K_EEPROM_HDR_11A(ee->ee_header))
+ offset += AR5K_EEPROM_GROUP3_OFFSET;
+
+ /* NB: frequency piers parsed during mode init */
+ gen_chan_info = ee->ee_pwr_cal_b;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
+ if (AR5K_EEPROM_HDR_11A(ee->ee_header))
+ offset += AR5K_EEPROM_GROUP4_OFFSET;
+ else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
+ offset += AR5K_EEPROM_GROUP2_OFFSET;
+
+ /* NB: frequency piers parsed during mode init */
+ gen_chan_info = ee->ee_pwr_cal_g;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ for (i = 0; i < ee->ee_n_piers[mode]; i++) {
+ chan_pcal_info = &gen_chan_info[i].rf5112_info;
+
+ /* Power values in quarter dB
+ * for the lower xpd gain curve
+ * (0 dBm -> higher output power) */
+ for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
+ AR5K_EEPROM_READ(offset++, val);
+ chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
+ chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
+ }
+
+ /* PCDAC steps
+ * corresponding to the above power
+ * measurements */
+ AR5K_EEPROM_READ(offset++, val);
+ chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
+ chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
+ chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
+
+ /* Power values in quarter dB
+ * for the higher xpd gain curve
+ * (18 dBm -> lower output power) */
+ AR5K_EEPROM_READ(offset++, val);
+ chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
+ chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
+
+ AR5K_EEPROM_READ(offset++, val);
+ chan_pcal_info->pwr_x3[2] = (val & 0xff);
+
+ /* PCDAC steps
+ * corresponding to the above power
+ * measurements (fixed) */
+ chan_pcal_info->pcdac_x3[0] = 20;
+ chan_pcal_info->pcdac_x3[1] = 35;
+ chan_pcal_info->pcdac_x3[2] = 63;
+
+ if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
+ chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
+
+ /* Last xpd0 power level is also channel maximum */
+ gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
+ } else {
+ chan_pcal_info->pcdac_x0[0] = 1;
+ gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
+ }
+
+ }
+
+ return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
+}
+
+
+/*
+ * Read power calibration for RF2413 chips
+ *
+ * For RF2413 we have a Power to PDDAC table (Power Detector)
+ * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
+ * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
+ * axis and looks like an exponential function like the RF5111 curve.
+ *
+ * To recreate the curves we read here the points and interpolate
+ * later. Note that in most cases only 2 (higher and lower) curves are
+ * used (like RF5112) but vendors have the oportunity to include all
+ * 4 curves on eeprom. The final curve (higher power) has an extra
+ * point for better accuracy like RF5112.
+ */
+
+/* For RF2413 power calibration data doesn't start on a fixed location and
+ * if a mode is not supported, it's section is missing -not zeroed-.
+ * So we need to calculate the starting offset for each section by using
+ * these two functions */
+
+/* Return the size of each section based on the mode and the number of pd
+ * gains available (maximum 4). */
+static inline unsigned int
+ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
+{
+ static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
+ unsigned int sz;
+
+ sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
+ sz *= ee->ee_n_piers[mode];
+
+ return sz;
+}
+
+/* Return the starting offset for a section based on the modes supported
+ * and each section's size. */
+static unsigned int
+ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
+{
+ u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
+
+ switch(mode) {
+ case AR5K_EEPROM_MODE_11G:
+ if (AR5K_EEPROM_HDR_11B(ee->ee_header))
+ offset += ath5k_pdgains_size_2413(ee,
+ AR5K_EEPROM_MODE_11B) +
+ AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
+ /* fall through */
+ case AR5K_EEPROM_MODE_11B:
+ if (AR5K_EEPROM_HDR_11A(ee->ee_header))
+ offset += ath5k_pdgains_size_2413(ee,
+ AR5K_EEPROM_MODE_11A) +
+ AR5K_EEPROM_N_5GHZ_CHAN / 2;
+ /* fall through */
+ case AR5K_EEPROM_MODE_11A:
+ break;
+ default:
+ break;
+ }
+
+ return offset;
+}
+
+/* Convert RF2413 specific data to generic raw data
+ * used by interpolation code */
+static int
+ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
+ struct ath5k_chan_pcal_info *chinfo)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info_rf2413 *pcinfo;
+ u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
+ unsigned int pier, pdg, point;
+
+ /* Fill raw data for each calibration pier */
+ for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
+
+ pcinfo = &chinfo[pier].rf2413_info;
+
+ /* Allocate pd_curves for this cal pier */
+ chinfo[pier].pd_curves =
+ kcalloc(AR5K_EEPROM_N_PD_CURVES,
+ sizeof(struct ath5k_pdgain_info),
+ GFP_KERNEL);
+
+ if (!chinfo[pier].pd_curves)
+ return -ENOMEM;
+
+ /* Fill pd_curves */
+ for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
+
+ u8 idx = pdgain_idx[pdg];
+ struct ath5k_pdgain_info *pd =
+ &chinfo[pier].pd_curves[idx];
+
+ /* One more point for the highest power
+ * curve (lowest gain) */
+ if (pdg == ee->ee_pd_gains[mode] - 1)
+ pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
+ else
+ pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
+
+ /* Allocate pd points for this curve */
+ pd->pd_step = kcalloc(pd->pd_points,
+ sizeof(u8), GFP_KERNEL);
+
+ if (!pd->pd_step)
+ return -ENOMEM;
+
+ pd->pd_pwr = kcalloc(pd->pd_points,
+ sizeof(s16), GFP_KERNEL);
+
+ if (!pd->pd_pwr)
+ return -ENOMEM;
+
+ /* Fill raw dataset
+ * convert all pwr levels to
+ * quarter dB for RF5112 combatibility */
+ pd->pd_step[0] = pcinfo->pddac_i[pdg];
+ pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
+
+ for (point = 1; point < pd->pd_points; point++) {
+
+ pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
+ 2 * pcinfo->pwr[pdg][point - 1];
+
+ pd->pd_step[point] = pd->pd_step[point - 1] +
+ pcinfo->pddac[pdg][point - 1];
+
+ }
+
+ /* Highest gain curve -> min power */
+ if (pdg == 0)
+ chinfo[pier].min_pwr = pd->pd_pwr[0];
+
+ /* Lowest gain curve -> max power */
+ if (pdg == ee->ee_pd_gains[mode] - 1)
+ chinfo[pier].max_pwr =
+ pd->pd_pwr[pd->pd_points - 1];
+ }
+ }
+
+ return 0;
+}
+
+/* Parse EEPROM data */
+static int
+ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info_rf2413 *pcinfo;
+ struct ath5k_chan_pcal_info *chinfo;
+ u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
+ u32 offset;
+ int idx, i, ret;
+ u16 val;
+ u8 pd_gains = 0;
+
+ /* Count how many curves we have and
+ * identify them (which one of the 4
+ * available curves we have on each count).
+ * Curves are stored from higher to
+ * lower gain so we go backwards */
+ for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
+ /* ee_x_gain[mode] is x gain mask */
+ if ((ee->ee_x_gain[mode] >> idx) & 0x1)
+ pdgain_idx[pd_gains++] = idx;
+
+ }
+ ee->ee_pd_gains[mode] = pd_gains;
+
+ if (pd_gains == 0)
+ return -EINVAL;
+
+ offset = ath5k_cal_data_offset_2413(ee, mode);
+ switch (mode) {
+ case AR5K_EEPROM_MODE_11A:
+ if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
+ return 0;
+
+ ath5k_eeprom_init_11a_pcal_freq(ah, offset);
+ offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
+ chinfo = ee->ee_pwr_cal_a;
+ break;
+ case AR5K_EEPROM_MODE_11B:
+ if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
+ return 0;
+
+ ath5k_eeprom_init_11bg_2413(ah, mode, offset);
+ offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
+ chinfo = ee->ee_pwr_cal_b;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
+ return 0;
+
+ ath5k_eeprom_init_11bg_2413(ah, mode, offset);
+ offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
+ chinfo = ee->ee_pwr_cal_g;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ for (i = 0; i < ee->ee_n_piers[mode]; i++) {
+ pcinfo = &chinfo[i].rf2413_info;
+
+ /*
+ * Read pwr_i, pddac_i and the first
+ * 2 pd points (pwr, pddac)
+ */
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pwr_i[0] = val & 0x1f;
+ pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
+ pcinfo->pwr[0][0] = (val >> 12) & 0xf;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pddac[0][0] = val & 0x3f;
+ pcinfo->pwr[0][1] = (val >> 6) & 0xf;
+ pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pwr[0][2] = val & 0xf;
+ pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
+
+ pcinfo->pwr[0][3] = 0;
+ pcinfo->pddac[0][3] = 0;
+
+ if (pd_gains > 1) {
+ /*
+ * Pd gain 0 is not the last pd gain
+ * so it only has 2 pd points.
+ * Continue wih pd gain 1.
+ */
+ pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
+
+ pcinfo->pddac_i[1] = (val >> 15) & 0x1;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
+
+ pcinfo->pwr[1][0] = (val >> 6) & 0xf;
+ pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pwr[1][1] = val & 0xf;
+ pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
+ pcinfo->pwr[1][2] = (val >> 10) & 0xf;
+
+ pcinfo->pddac[1][2] = (val >> 14) & 0x3;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pddac[1][2] |= (val & 0xF) << 2;
+
+ pcinfo->pwr[1][3] = 0;
+ pcinfo->pddac[1][3] = 0;
+ } else if (pd_gains == 1) {
+ /*
+ * Pd gain 0 is the last one so
+ * read the extra point.
+ */
+ pcinfo->pwr[0][3] = (val >> 10) & 0xf;
+
+ pcinfo->pddac[0][3] = (val >> 14) & 0x3;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pddac[0][3] |= (val & 0xF) << 2;
+ }
+
+ /*
+ * Proceed with the other pd_gains
+ * as above.
+ */
+ if (pd_gains > 2) {
+ pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
+ pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pwr[2][0] = (val >> 0) & 0xf;
+ pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
+ pcinfo->pwr[2][1] = (val >> 10) & 0xf;
+
+ pcinfo->pddac[2][1] = (val >> 14) & 0x3;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pddac[2][1] |= (val & 0xF) << 2;
+
+ pcinfo->pwr[2][2] = (val >> 4) & 0xf;
+ pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
+
+ pcinfo->pwr[2][3] = 0;
+ pcinfo->pddac[2][3] = 0;
+ } else if (pd_gains == 2) {
+ pcinfo->pwr[1][3] = (val >> 4) & 0xf;
+ pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
+ }
+
+ if (pd_gains > 3) {
+ pcinfo->pwr_i[3] = (val >> 14) & 0x3;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
+
+ pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
+ pcinfo->pwr[3][0] = (val >> 10) & 0xf;
+ pcinfo->pddac[3][0] = (val >> 14) & 0x3;
+
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pddac[3][0] |= (val & 0xF) << 2;
+ pcinfo->pwr[3][1] = (val >> 4) & 0xf;
+ pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
+
+ pcinfo->pwr[3][2] = (val >> 14) & 0x3;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
+
+ pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
+ pcinfo->pwr[3][3] = (val >> 8) & 0xf;
+
+ pcinfo->pddac[3][3] = (val >> 12) & 0xF;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
+ } else if (pd_gains == 3) {
+ pcinfo->pwr[2][3] = (val >> 14) & 0x3;
+ AR5K_EEPROM_READ(offset++, val);
+ pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
+
+ pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
+ }
+ }
+
+ return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
+}
+
+
+/*
+ * Read per rate target power (this is the maximum tx power
+ * supported by the card). This info is used when setting
+ * tx power, no matter the channel.
+ *
+ * This also works for v5 EEPROMs.
+ */
+static int
+ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_rate_pcal_info *rate_pcal_info;
+ u8 *rate_target_pwr_num;
+ u32 offset;
+ u16 val;
+ int ret, i;
+
+ offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
+ rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
+ switch (mode) {
+ case AR5K_EEPROM_MODE_11A:
+ offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
+ rate_pcal_info = ee->ee_rate_tpwr_a;
+ ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
+ break;
+ case AR5K_EEPROM_MODE_11B:
+ offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
+ rate_pcal_info = ee->ee_rate_tpwr_b;
+ ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
+ rate_pcal_info = ee->ee_rate_tpwr_g;
+ ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* Different freq mask for older eeproms (<= v3.2) */
+ if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
+ for (i = 0; i < (*rate_target_pwr_num); i++) {
+ AR5K_EEPROM_READ(offset++, val);
+ rate_pcal_info[i].freq =
+ ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
+
+ rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
+ rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
+
+ AR5K_EEPROM_READ(offset++, val);
+
+ if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
+ val == 0) {
+ (*rate_target_pwr_num) = i;
+ break;
+ }
+
+ rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
+ rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
+ rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
+ }
+ } else {
+ for (i = 0; i < (*rate_target_pwr_num); i++) {
+ AR5K_EEPROM_READ(offset++, val);
+ rate_pcal_info[i].freq =
+ ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
+
+ rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
+ rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
+
+ AR5K_EEPROM_READ(offset++, val);
+
+ if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
+ val == 0) {
+ (*rate_target_pwr_num) = i;
+ break;
+ }
+
+ rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
+ rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
+ rate_pcal_info[i].target_power_54 = (val & 0x3f);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Read per channel calibration info from EEPROM
+ *
+ * This info is used to calibrate the baseband power table. Imagine
+ * that for each channel there is a power curve that's hw specific
+ * (depends on amplifier etc) and we try to "correct" this curve using
+ * offests we pass on to phy chip (baseband -> before amplifier) so that
+ * it can use accurate power values when setting tx power (takes amplifier's
+ * performance on each channel into account).
+ *
+ * EEPROM provides us with the offsets for some pre-calibrated channels
+ * and we have to interpolate to create the full table for these channels and
+ * also the table for any channel.
+ */
+static int
+ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ int (*read_pcal)(struct ath5k_hw *hw, int mode);
+ int mode;
+ int err;
+
+ if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
+ (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
+ read_pcal = ath5k_eeprom_read_pcal_info_5112;
+ else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
+ (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
+ read_pcal = ath5k_eeprom_read_pcal_info_2413;
+ else
+ read_pcal = ath5k_eeprom_read_pcal_info_5111;
+
+
+ for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
+ mode++) {
+ err = read_pcal(ah, mode);
+ if (err)
+ return err;
+
+ err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
+ if (err < 0)
+ return err;
+ }
+
+ return 0;
+}
+
+static int
+ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_chan_pcal_info *chinfo;
+ u8 pier, pdg;
+
+ switch (mode) {
+ case AR5K_EEPROM_MODE_11A:
+ if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
+ return 0;
+ chinfo = ee->ee_pwr_cal_a;
+ break;
+ case AR5K_EEPROM_MODE_11B:
+ if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
+ return 0;
+ chinfo = ee->ee_pwr_cal_b;
+ break;
+ case AR5K_EEPROM_MODE_11G:
+ if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
+ return 0;
+ chinfo = ee->ee_pwr_cal_g;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
+ if (!chinfo[pier].pd_curves)
+ continue;
+
+ for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
+ struct ath5k_pdgain_info *pd =
+ &chinfo[pier].pd_curves[pdg];
+
+ if (pd != NULL) {
+ kfree(pd->pd_step);
+ kfree(pd->pd_pwr);
+ }
+ }
+
+ kfree(chinfo[pier].pd_curves);
+ }
+
+ return 0;
+}
+
+void
+ath5k_eeprom_detach(struct ath5k_hw *ah)
+{
+ u8 mode;
+
+ for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
+ ath5k_eeprom_free_pcal_info(ah, mode);
+}
+
+/* Read conformance test limits used for regulatory control */
+static int
+ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ struct ath5k_edge_power *rep;
+ unsigned int fmask, pmask;
+ unsigned int ctl_mode;
+ int ret, i, j;
+ u32 offset;
+ u16 val;
+
+ pmask = AR5K_EEPROM_POWER_M;
+ fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
+ offset = AR5K_EEPROM_CTL(ee->ee_version);
+ ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
+ for (i = 0; i < ee->ee_ctls; i += 2) {
+ AR5K_EEPROM_READ(offset++, val);
+ ee->ee_ctl[i] = (val >> 8) & 0xff;
+ ee->ee_ctl[i + 1] = val & 0xff;
+ }
+
+ offset = AR5K_EEPROM_GROUP8_OFFSET;
+ if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
+ offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
+ AR5K_EEPROM_GROUP5_OFFSET;
+ else
+ offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
+
+ rep = ee->ee_ctl_pwr;
+ for(i = 0; i < ee->ee_ctls; i++) {
+ switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
+ case AR5K_CTL_11A:
+ case AR5K_CTL_TURBO:
+ ctl_mode = AR5K_EEPROM_MODE_11A;
+ break;
+ default:
+ ctl_mode = AR5K_EEPROM_MODE_11G;
+ break;
+ }
+ if (ee->ee_ctl[i] == 0) {
+ if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
+ offset += 8;
+ else
+ offset += 7;
+ rep += AR5K_EEPROM_N_EDGES;
+ continue;
+ }
+ if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
+ for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
+ AR5K_EEPROM_READ(offset++, val);
+ rep[j].freq = (val >> 8) & fmask;
+ rep[j + 1].freq = val & fmask;
+ }
+ for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
+ AR5K_EEPROM_READ(offset++, val);
+ rep[j].edge = (val >> 8) & pmask;
+ rep[j].flag = (val >> 14) & 1;
+ rep[j + 1].edge = val & pmask;
+ rep[j + 1].flag = (val >> 6) & 1;
+ }
+ } else {
+ AR5K_EEPROM_READ(offset++, val);
+ rep[0].freq = (val >> 9) & fmask;
+ rep[1].freq = (val >> 2) & fmask;
+ rep[2].freq = (val << 5) & fmask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ rep[2].freq |= (val >> 11) & 0x1f;
+ rep[3].freq = (val >> 4) & fmask;
+ rep[4].freq = (val << 3) & fmask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ rep[4].freq |= (val >> 13) & 0x7;
+ rep[5].freq = (val >> 6) & fmask;
+ rep[6].freq = (val << 1) & fmask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ rep[6].freq |= (val >> 15) & 0x1;
+ rep[7].freq = (val >> 8) & fmask;
+
+ rep[0].edge = (val >> 2) & pmask;
+ rep[1].edge = (val << 4) & pmask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ rep[1].edge |= (val >> 12) & 0xf;
+ rep[2].edge = (val >> 6) & pmask;
+ rep[3].edge = val & pmask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ rep[4].edge = (val >> 10) & pmask;
+ rep[5].edge = (val >> 4) & pmask;
+ rep[6].edge = (val << 2) & pmask;
+
+ AR5K_EEPROM_READ(offset++, val);
+ rep[6].edge |= (val >> 14) & 0x3;
+ rep[7].edge = (val >> 8) & pmask;
+ }
+ for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
+ rep[j].freq = ath5k_eeprom_bin2freq(ee,
+ rep[j].freq, ctl_mode);
+ }
+ rep += AR5K_EEPROM_N_EDGES;
+ }
+
+ return 0;
+}
+
+static int
+ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
+{
+ struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+ u32 offset;
+ u16 val;
+ int ret = 0, i;
+
+ offset = AR5K_EEPROM_CTL(ee->ee_version) +
+ AR5K_EEPROM_N_CTLS(ee->ee_version);
+
+ if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
+ /* No spur info for 5GHz */
+ ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
+ /* 2 channels for 2GHz (2464/2420) */
+ ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
+ ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
+ ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
+ } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
+ for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
+ AR5K_EEPROM_READ(offset, val);
+ ee->ee_spur_chans[i][0] = val;
+ AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
+ val);
+ ee->ee_spur_chans[i][1] = val;
+ offset++;
+ }
+ }
+
+ return ret;
+}
+
+/*
+ * Initialize eeprom data structure
+ */
+int
+ath5k_eeprom_init(struct ath5k_hw *ah)
+{
+ int err;
+
+ err = ath5k_eeprom_init_header(ah);
+ if (err < 0)
+ return err;
+
+ err = ath5k_eeprom_init_modes(ah);
+ if (err < 0)
+ return err;
+
+ err = ath5k_eeprom_read_pcal_info(ah);
+ if (err < 0)
+ return err;
+
+ err = ath5k_eeprom_read_ctl_info(ah);
+ if (err < 0)
+ return err;
+
+ err = ath5k_eeprom_read_spur_chans(ah);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+/*
+ * Read the MAC address from eeprom
+ */
+int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
+{
+ u8 mac_d[ETH_ALEN] = {};
+ u32 total, offset;
+ u16 data;
+ int octet, ret;
+
+ ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
+ if (ret)
+ return ret;
+
+ for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
+ ret = ath5k_hw_eeprom_read(ah, offset, &data);
+ if (ret)
+ return ret;
+
+ total += data;
+ mac_d[octet + 1] = data & 0xff;
+ mac_d[octet] = data >> 8;
+ octet += 2;
+ }
+
+ if (!total || total == 3 * 0xffff)
+ return -EINVAL;
+
+ memcpy(mac, mac_d, ETH_ALEN);
+
+ return 0;
+}