aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/ctree.h
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/ctree.h')
-rw-r--r--fs/btrfs/ctree.h62
1 files changed, 58 insertions, 4 deletions
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h
index b92fbbb5ecd..18daccd8453 100644
--- a/fs/btrfs/ctree.h
+++ b/fs/btrfs/ctree.h
@@ -1,22 +1,36 @@
#ifndef __CTREE__
#define __CTREE__
-#define CTREE_BLOCKSIZE 4096
+#define CTREE_BLOCKSIZE 1024
+/*
+ * the key defines the order in the tree, and so it also defines (optimal)
+ * block layout. objectid corresonds to the inode number. The flags
+ * tells us things about the object, and is a kind of stream selector.
+ * so for a given inode, keys with flags of 1 might refer to the inode
+ * data, flags of 2 may point to file data in the btree and flags == 3
+ * may point to extents.
+ *
+ * offset is the starting byte offset for this key in the stream.
+ */
struct key {
u64 objectid;
u32 flags;
u64 offset;
} __attribute__ ((__packed__));
+/*
+ * every tree block (leaf or node) starts with this header.
+ */
struct header {
u64 fsid[2]; /* FS specific uuid */
- u64 blocknr;
- u64 parentid;
+ u64 blocknr; /* which block this node is supposed to live in */
+ u64 parentid; /* objectid of the tree root */
u32 csum;
u32 ham;
u16 nritems;
u16 flags;
+ /* generation flags to be added */
} __attribute__ ((__packed__));
#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct header)) / \
@@ -28,6 +42,11 @@ struct header {
struct tree_buffer;
+/*
+ * in ram representation of the tree. extent_root is used for all allocations
+ * and for the extent tree extent_root root. current_insert is used
+ * only for the extent tree.
+ */
struct ctree_root {
struct tree_buffer *node;
struct ctree_root *extent_root;
@@ -36,27 +55,46 @@ struct ctree_root {
struct radix_tree_root cache_radix;
};
+/*
+ * describes a tree on disk
+ */
struct ctree_root_info {
u64 fsid[2]; /* FS specific uuid */
u64 blocknr; /* blocknr of this block */
u64 objectid; /* inode number of this root */
- u64 tree_root; /* the tree root */
+ u64 tree_root; /* the tree root block */
u32 csum;
u32 ham;
u64 snapuuid[2]; /* root specific uuid */
} __attribute__ ((__packed__));
+/*
+ * the super block basically lists the main trees of the FS
+ * it currently lacks any block count etc etc
+ */
struct ctree_super_block {
struct ctree_root_info root_info;
struct ctree_root_info extent_info;
} __attribute__ ((__packed__));
+/*
+ * A leaf is full of items. The exact type of item is defined by
+ * the key flags parameter. offset and size tell us where to find
+ * the item in the leaf (relative to the start of the data area)
+ */
struct item {
struct key key;
u16 offset;
u16 size;
} __attribute__ ((__packed__));
+/*
+ * leaves have an item area and a data area:
+ * [item0, item1....itemN] [free space] [dataN...data1, data0]
+ *
+ * The data is separate from the items to get the keys closer together
+ * during searches.
+ */
#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct header))
struct leaf {
struct header header;
@@ -66,17 +104,33 @@ struct leaf {
};
} __attribute__ ((__packed__));
+/*
+ * all non-leaf blocks are nodes, they hold only keys and pointers to
+ * other blocks
+ */
struct node {
struct header header;
struct key keys[NODEPTRS_PER_BLOCK];
u64 blockptrs[NODEPTRS_PER_BLOCK];
} __attribute__ ((__packed__));
+/*
+ * items in the extent btree are used to record the objectid of the
+ * owner of the block and the number of references
+ */
struct extent_item {
u32 refs;
u64 owner;
} __attribute__ ((__packed__));
+/*
+ * ctree_paths remember the path taken from the root down to the leaf.
+ * level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
+ * to any other levels that are present.
+ *
+ * The slots array records the index of the item or block pointer
+ * used while walking the tree.
+ */
struct ctree_path {
struct tree_buffer *nodes[MAX_LEVEL];
int slots[MAX_LEVEL];