aboutsummaryrefslogtreecommitdiff
path: root/include/linux/fs.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/fs.h')
-rw-r--r--include/linux/fs.h124
1 files changed, 83 insertions, 41 deletions
diff --git a/include/linux/fs.h b/include/linux/fs.h
index 61211ad823f..e766be0d432 100644
--- a/include/linux/fs.h
+++ b/include/linux/fs.h
@@ -87,6 +87,60 @@ struct inodes_stat_t {
*/
#define FMODE_NOCMTIME ((__force fmode_t)2048)
+/*
+ * The below are the various read and write types that we support. Some of
+ * them include behavioral modifiers that send information down to the
+ * block layer and IO scheduler. Terminology:
+ *
+ * The block layer uses device plugging to defer IO a little bit, in
+ * the hope that we will see more IO very shortly. This increases
+ * coalescing of adjacent IO and thus reduces the number of IOs we
+ * have to send to the device. It also allows for better queuing,
+ * if the IO isn't mergeable. If the caller is going to be waiting
+ * for the IO, then he must ensure that the device is unplugged so
+ * that the IO is dispatched to the driver.
+ *
+ * All IO is handled async in Linux. This is fine for background
+ * writes, but for reads or writes that someone waits for completion
+ * on, we want to notify the block layer and IO scheduler so that they
+ * know about it. That allows them to make better scheduling
+ * decisions. So when the below references 'sync' and 'async', it
+ * is referencing this priority hint.
+ *
+ * With that in mind, the available types are:
+ *
+ * READ A normal read operation. Device will be plugged.
+ * READ_SYNC A synchronous read. Device is not plugged, caller can
+ * immediately wait on this read without caring about
+ * unplugging.
+ * READA Used for read-ahead operations. Lower priority, and the
+ * block layer could (in theory) choose to ignore this
+ * request if it runs into resource problems.
+ * WRITE A normal async write. Device will be plugged.
+ * SWRITE Like WRITE, but a special case for ll_rw_block() that
+ * tells it to lock the buffer first. Normally a buffer
+ * must be locked before doing IO.
+ * WRITE_SYNC_PLUG Synchronous write. Identical to WRITE, but passes down
+ * the hint that someone will be waiting on this IO
+ * shortly. The device must still be unplugged explicitly,
+ * WRITE_SYNC_PLUG does not do this as we could be
+ * submitting more writes before we actually wait on any
+ * of them.
+ * WRITE_SYNC Like WRITE_SYNC_PLUG, but also unplugs the device
+ * immediately after submission. The write equivalent
+ * of READ_SYNC.
+ * WRITE_ODIRECT Special case write for O_DIRECT only.
+ * SWRITE_SYNC
+ * SWRITE_SYNC_PLUG Like WRITE_SYNC/WRITE_SYNC_PLUG, but locks the buffer.
+ * See SWRITE.
+ * WRITE_BARRIER Like WRITE, but tells the block layer that all
+ * previously submitted writes must be safely on storage
+ * before this one is started. Also guarantees that when
+ * this write is complete, it itself is also safely on
+ * storage. Prevents reordering of writes on both sides
+ * of this IO.
+ *
+ */
#define RW_MASK 1
#define RWA_MASK 2
#define READ 0
@@ -95,9 +149,18 @@ struct inodes_stat_t {
#define SWRITE 3 /* for ll_rw_block() - wait for buffer lock */
#define READ_SYNC (READ | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG))
#define READ_META (READ | (1 << BIO_RW_META))
-#define WRITE_SYNC (WRITE | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG))
-#define SWRITE_SYNC (SWRITE | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG))
+#define WRITE_SYNC_PLUG (WRITE | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_NOIDLE))
+#define WRITE_SYNC (WRITE_SYNC_PLUG | (1 << BIO_RW_UNPLUG))
+#define WRITE_ODIRECT (WRITE | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG))
+#define SWRITE_SYNC_PLUG \
+ (SWRITE | (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_NOIDLE))
+#define SWRITE_SYNC (SWRITE_SYNC_PLUG | (1 << BIO_RW_UNPLUG))
#define WRITE_BARRIER (WRITE | (1 << BIO_RW_BARRIER))
+
+/*
+ * These aren't really reads or writes, they pass down information about
+ * parts of device that are now unused by the file system.
+ */
#define DISCARD_NOBARRIER (1 << BIO_RW_DISCARD)
#define DISCARD_BARRIER ((1 << BIO_RW_DISCARD) | (1 << BIO_RW_BARRIER))
@@ -734,9 +797,6 @@ enum inode_i_mutex_lock_class
I_MUTEX_QUOTA
};
-extern void inode_double_lock(struct inode *inode1, struct inode *inode2);
-extern void inode_double_unlock(struct inode *inode1, struct inode *inode2);
-
/*
* NOTE: in a 32bit arch with a preemptable kernel and
* an UP compile the i_size_read/write must be atomic
@@ -1695,6 +1755,9 @@ struct file_system_type {
struct lock_class_key i_alloc_sem_key;
};
+extern int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
+ int (*fill_super)(struct super_block *, void *, int),
+ struct vfsmount *mnt);
extern int get_sb_bdev(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
int (*fill_super)(struct super_block *, void *, int),
@@ -1741,6 +1804,8 @@ extern void drop_collected_mounts(struct vfsmount *);
extern int vfs_statfs(struct dentry *, struct kstatfs *);
+extern int current_umask(void);
+
/* /sys/fs */
extern struct kobject *fs_kobj;
@@ -1885,6 +1950,18 @@ extern int fsync_super(struct super_block *);
extern int fsync_no_super(struct block_device *);
#else
static inline void bd_forget(struct inode *inode) {}
+static inline int sync_blockdev(struct block_device *bdev) { return 0; }
+static inline void invalidate_bdev(struct block_device *bdev) {}
+
+static inline struct super_block *freeze_bdev(struct block_device *sb)
+{
+ return NULL;
+}
+
+static inline int thaw_bdev(struct block_device *bdev, struct super_block *sb)
+{
+ return 0;
+}
#endif
extern const struct file_operations def_blk_fops;
extern const struct file_operations def_chr_fops;
@@ -2129,8 +2206,6 @@ extern ssize_t generic_file_splice_read(struct file *, loff_t *,
struct pipe_inode_info *, size_t, unsigned int);
extern ssize_t generic_file_splice_write(struct pipe_inode_info *,
struct file *, loff_t *, size_t, unsigned int);
-extern ssize_t generic_file_splice_write_nolock(struct pipe_inode_info *,
- struct file *, loff_t *, size_t, unsigned int);
extern ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe,
struct file *out, loff_t *, size_t len, unsigned int flags);
extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
@@ -2323,19 +2398,7 @@ ssize_t simple_transaction_read(struct file *file, char __user *buf,
size_t size, loff_t *pos);
int simple_transaction_release(struct inode *inode, struct file *file);
-static inline void simple_transaction_set(struct file *file, size_t n)
-{
- struct simple_transaction_argresp *ar = file->private_data;
-
- BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
-
- /*
- * The barrier ensures that ar->size will really remain zero until
- * ar->data is ready for reading.
- */
- smp_mb();
- ar->size = n;
-}
+void simple_transaction_set(struct file *file, size_t n);
/*
* simple attribute files
@@ -2382,27 +2445,6 @@ ssize_t simple_attr_read(struct file *file, char __user *buf,
ssize_t simple_attr_write(struct file *file, const char __user *buf,
size_t len, loff_t *ppos);
-
-#ifdef CONFIG_SECURITY
-static inline char *alloc_secdata(void)
-{
- return (char *)get_zeroed_page(GFP_KERNEL);
-}
-
-static inline void free_secdata(void *secdata)
-{
- free_page((unsigned long)secdata);
-}
-#else
-static inline char *alloc_secdata(void)
-{
- return (char *)1;
-}
-
-static inline void free_secdata(void *secdata)
-{ }
-#endif /* CONFIG_SECURITY */
-
struct ctl_table;
int proc_nr_files(struct ctl_table *table, int write, struct file *filp,
void __user *buffer, size_t *lenp, loff_t *ppos);