diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Makefile | 2 | ||||
-rw-r--r-- | mm/allocpercpu.c | 28 | ||||
-rw-r--r-- | mm/kmemleak-test.c | 6 | ||||
-rw-r--r-- | mm/page-writeback.c | 5 | ||||
-rw-r--r-- | mm/percpu.c | 1420 | ||||
-rw-r--r-- | mm/quicklist.c | 2 | ||||
-rw-r--r-- | mm/slub.c | 4 | ||||
-rw-r--r-- | mm/vmalloc.c | 338 |
8 files changed, 1426 insertions, 379 deletions
diff --git a/mm/Makefile b/mm/Makefile index 5e0bd642669..c77c6487552 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -33,7 +33,7 @@ obj-$(CONFIG_FAILSLAB) += failslab.o obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o obj-$(CONFIG_FS_XIP) += filemap_xip.o obj-$(CONFIG_MIGRATION) += migrate.o -ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA +ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA obj-$(CONFIG_SMP) += percpu.o else obj-$(CONFIG_SMP) += allocpercpu.o diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index dfdee6a4735..df34ceae0c6 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c @@ -5,6 +5,8 @@ */ #include <linux/mm.h> #include <linux/module.h> +#include <linux/bootmem.h> +#include <asm/sections.h> #ifndef cache_line_size #define cache_line_size() L1_CACHE_BYTES @@ -147,3 +149,29 @@ void free_percpu(void *__pdata) kfree(__percpu_disguise(__pdata)); } EXPORT_SYMBOL_GPL(free_percpu); + +/* + * Generic percpu area setup. + */ +#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA +unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; + +EXPORT_SYMBOL(__per_cpu_offset); + +void __init setup_per_cpu_areas(void) +{ + unsigned long size, i; + char *ptr; + unsigned long nr_possible_cpus = num_possible_cpus(); + + /* Copy section for each CPU (we discard the original) */ + size = ALIGN(PERCPU_ENOUGH_ROOM, PAGE_SIZE); + ptr = alloc_bootmem_pages(size * nr_possible_cpus); + + for_each_possible_cpu(i) { + __per_cpu_offset[i] = ptr - __per_cpu_start; + memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); + ptr += size; + } +} +#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ diff --git a/mm/kmemleak-test.c b/mm/kmemleak-test.c index d5292fc6f52..177a5169bbd 100644 --- a/mm/kmemleak-test.c +++ b/mm/kmemleak-test.c @@ -36,7 +36,7 @@ struct test_node { }; static LIST_HEAD(test_list); -static DEFINE_PER_CPU(void *, test_pointer); +static DEFINE_PER_CPU(void *, kmemleak_test_pointer); /* * Some very simple testing. This function needs to be extended for @@ -86,9 +86,9 @@ static int __init kmemleak_test_init(void) } for_each_possible_cpu(i) { - per_cpu(test_pointer, i) = kmalloc(129, GFP_KERNEL); + per_cpu(kmemleak_test_pointer, i) = kmalloc(129, GFP_KERNEL); pr_info("kmemleak: kmalloc(129) = %p\n", - per_cpu(test_pointer, i)); + per_cpu(kmemleak_test_pointer, i)); } return 0; diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 81627ebcd31..997186c0b51 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -610,6 +610,8 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite) } } +static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; + /** * balance_dirty_pages_ratelimited_nr - balance dirty memory state * @mapping: address_space which was dirtied @@ -627,7 +629,6 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite) void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, unsigned long nr_pages_dirtied) { - static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; unsigned long ratelimit; unsigned long *p; @@ -640,7 +641,7 @@ void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, * tasks in balance_dirty_pages(). Period. */ preempt_disable(); - p = &__get_cpu_var(ratelimits); + p = &__get_cpu_var(bdp_ratelimits); *p += nr_pages_dirtied; if (unlikely(*p >= ratelimit)) { *p = 0; diff --git a/mm/percpu.c b/mm/percpu.c index 3311c8919f3..43d8cacfdaa 100644 --- a/mm/percpu.c +++ b/mm/percpu.c @@ -8,12 +8,13 @@ * * This is percpu allocator which can handle both static and dynamic * areas. Percpu areas are allocated in chunks in vmalloc area. Each - * chunk is consisted of nr_cpu_ids units and the first chunk is used - * for static percpu variables in the kernel image (special boot time - * alloc/init handling necessary as these areas need to be brought up - * before allocation services are running). Unit grows as necessary - * and all units grow or shrink in unison. When a chunk is filled up, - * another chunk is allocated. ie. in vmalloc area + * chunk is consisted of boot-time determined number of units and the + * first chunk is used for static percpu variables in the kernel image + * (special boot time alloc/init handling necessary as these areas + * need to be brought up before allocation services are running). + * Unit grows as necessary and all units grow or shrink in unison. + * When a chunk is filled up, another chunk is allocated. ie. in + * vmalloc area * * c0 c1 c2 * ------------------- ------------------- ------------ @@ -22,11 +23,13 @@ * * Allocation is done in offset-size areas of single unit space. Ie, * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, - * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring - * percpu base registers pcpu_unit_size apart. + * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to + * cpus. On NUMA, the mapping can be non-linear and even sparse. + * Percpu access can be done by configuring percpu base registers + * according to cpu to unit mapping and pcpu_unit_size. * - * There are usually many small percpu allocations many of them as - * small as 4 bytes. The allocator organizes chunks into lists + * There are usually many small percpu allocations many of them being + * as small as 4 bytes. The allocator organizes chunks into lists * according to free size and tries to allocate from the fullest one. * Each chunk keeps the maximum contiguous area size hint which is * guaranteed to be eqaul to or larger than the maximum contiguous @@ -43,7 +46,7 @@ * * To use this allocator, arch code should do the followings. * - * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA + * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA * * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate * regular address to percpu pointer and back if they need to be @@ -55,7 +58,9 @@ #include <linux/bitmap.h> #include <linux/bootmem.h> +#include <linux/err.h> #include <linux/list.h> +#include <linux/log2.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> @@ -89,25 +94,38 @@ struct pcpu_chunk { struct list_head list; /* linked to pcpu_slot lists */ int free_size; /* free bytes in the chunk */ int contig_hint; /* max contiguous size hint */ - struct vm_struct *vm; /* mapped vmalloc region */ + void *base_addr; /* base address of this chunk */ int map_used; /* # of map entries used */ int map_alloc; /* # of map entries allocated */ int *map; /* allocation map */ + struct vm_struct **vms; /* mapped vmalloc regions */ bool immutable; /* no [de]population allowed */ - struct page **page; /* points to page array */ - struct page *page_ar[]; /* #cpus * UNIT_PAGES */ + unsigned long populated[]; /* populated bitmap */ }; static int pcpu_unit_pages __read_mostly; static int pcpu_unit_size __read_mostly; -static int pcpu_chunk_size __read_mostly; +static int pcpu_nr_units __read_mostly; +static int pcpu_atom_size __read_mostly; static int pcpu_nr_slots __read_mostly; static size_t pcpu_chunk_struct_size __read_mostly; +/* cpus with the lowest and highest unit numbers */ +static unsigned int pcpu_first_unit_cpu __read_mostly; +static unsigned int pcpu_last_unit_cpu __read_mostly; + /* the address of the first chunk which starts with the kernel static area */ void *pcpu_base_addr __read_mostly; EXPORT_SYMBOL_GPL(pcpu_base_addr); +static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ +const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ + +/* group information, used for vm allocation */ +static int pcpu_nr_groups __read_mostly; +static const unsigned long *pcpu_group_offsets __read_mostly; +static const size_t *pcpu_group_sizes __read_mostly; + /* * The first chunk which always exists. Note that unlike other * chunks, this one can be allocated and mapped in several different @@ -129,9 +147,9 @@ static int pcpu_reserved_chunk_limit; * Synchronization rules. * * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former - * protects allocation/reclaim paths, chunks and chunk->page arrays. - * The latter is a spinlock and protects the index data structures - - * chunk slots, chunks and area maps in chunks. + * protects allocation/reclaim paths, chunks, populated bitmap and + * vmalloc mapping. The latter is a spinlock and protects the index + * data structures - chunk slots, chunks and area maps in chunks. * * During allocation, pcpu_alloc_mutex is kept locked all the time and * pcpu_lock is grabbed and released as necessary. All actual memory @@ -178,31 +196,23 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) static int pcpu_page_idx(unsigned int cpu, int page_idx) { - return cpu * pcpu_unit_pages + page_idx; -} - -static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, - unsigned int cpu, int page_idx) -{ - return &chunk->page[pcpu_page_idx(cpu, page_idx)]; + return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; } static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, unsigned int cpu, int page_idx) { - return (unsigned long)chunk->vm->addr + - (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); + return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + + (page_idx << PAGE_SHIFT); } -static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, - int page_idx) +static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, + unsigned int cpu, int page_idx) { - /* - * Any possible cpu id can be used here, so there's no need to - * worry about preemption or cpu hotplug. - */ - return *pcpu_chunk_pagep(chunk, raw_smp_processor_id(), - page_idx) != NULL; + /* must not be used on pre-mapped chunk */ + WARN_ON(chunk->immutable); + + return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); } /* set the pointer to a chunk in a page struct */ @@ -217,6 +227,34 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) return (struct pcpu_chunk *)page->index; } +static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) +{ + *rs = find_next_zero_bit(chunk->populated, end, *rs); + *re = find_next_bit(chunk->populated, end, *rs + 1); +} + +static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) +{ + *rs = find_next_bit(chunk->populated, end, *rs); + *re = find_next_zero_bit(chunk->populated, end, *rs + 1); +} + +/* + * (Un)populated page region iterators. Iterate over (un)populated + * page regions betwen @start and @end in @chunk. @rs and @re should + * be integer variables and will be set to start and end page index of + * the current region. + */ +#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ + for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ + (rs) < (re); \ + (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) + +#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ + for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ + (rs) < (re); \ + (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) + /** * pcpu_mem_alloc - allocate memory * @size: bytes to allocate @@ -292,10 +330,10 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) */ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) { - void *first_start = pcpu_first_chunk->vm->addr; + void *first_start = pcpu_first_chunk->base_addr; /* is it in the first chunk? */ - if (addr >= first_start && addr < first_start + pcpu_chunk_size) { + if (addr >= first_start && addr < first_start + pcpu_unit_size) { /* is it in the reserved area? */ if (addr < first_start + pcpu_reserved_chunk_limit) return pcpu_reserved_chunk; @@ -309,7 +347,7 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) * space. Note that any possible cpu id can be used here, so * there's no need to worry about preemption or cpu hotplug. */ - addr += raw_smp_processor_id() * pcpu_unit_size; + addr += pcpu_unit_offsets[raw_smp_processor_id()]; return pcpu_get_page_chunk(vmalloc_to_page(addr)); } @@ -558,125 +596,327 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) } /** - * pcpu_unmap - unmap pages out of a pcpu_chunk + * pcpu_get_pages_and_bitmap - get temp pages array and bitmap * @chunk: chunk of interest - * @page_start: page index of the first page to unmap - * @page_end: page index of the last page to unmap + 1 - * @flush_tlb: whether to flush tlb or not + * @bitmapp: output parameter for bitmap + * @may_alloc: may allocate the array * - * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. - * If @flush is true, vcache is flushed before unmapping and tlb - * after. + * Returns pointer to array of pointers to struct page and bitmap, + * both of which can be indexed with pcpu_page_idx(). The returned + * array is cleared to zero and *@bitmapp is copied from + * @chunk->populated. Note that there is only one array and bitmap + * and access exclusion is the caller's responsibility. + * + * CONTEXT: + * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. + * Otherwise, don't care. + * + * RETURNS: + * Pointer to temp pages array on success, NULL on failure. */ -static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, - bool flush_tlb) +static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, + unsigned long **bitmapp, + bool may_alloc) { - unsigned int last = nr_cpu_ids - 1; - unsigned int cpu; + static struct page **pages; + static unsigned long *bitmap; + size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); + size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * + sizeof(unsigned long); + + if (!pages || !bitmap) { + if (may_alloc && !pages) + pages = pcpu_mem_alloc(pages_size); + if (may_alloc && !bitmap) + bitmap = pcpu_mem_alloc(bitmap_size); + if (!pages || !bitmap) + return NULL; + } - /* unmap must not be done on immutable chunk */ - WARN_ON(chunk->immutable); + memset(pages, 0, pages_size); + bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); - /* - * Each flushing trial can be very expensive, issue flush on - * the whole region at once rather than doing it for each cpu. - * This could be an overkill but is more scalable. - */ - flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), - pcpu_chunk_addr(chunk, last, page_end)); + *bitmapp = bitmap; + return pages; +} - for_each_possible_cpu(cpu) - unmap_kernel_range_noflush( - pcpu_chunk_addr(chunk, cpu, page_start), - (page_end - page_start) << PAGE_SHIFT); - - /* ditto as flush_cache_vunmap() */ - if (flush_tlb) - flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), - pcpu_chunk_addr(chunk, last, page_end)); +/** + * pcpu_free_pages - free pages which were allocated for @chunk + * @chunk: chunk pages were allocated for + * @pages: array of pages to be freed, indexed by pcpu_page_idx() + * @populated: populated bitmap + * @page_start: page index of the first page to be freed + * @page_end: page index of the last page to be freed + 1 + * + * Free pages [@page_start and @page_end) in @pages for all units. + * The pages were allocated for @chunk. + */ +static void pcpu_free_pages(struct pcpu_chunk *chunk, + struct page **pages, unsigned long *populated, + int page_start, int page_end) +{ + unsigned int cpu; + int i; + + for_each_possible_cpu(cpu) { + for (i = page_start; i < page_end; i++) { + struct page *page = pages[pcpu_page_idx(cpu, i)]; + + if (page) + __free_page(page); + } + } } /** - * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk - * @chunk: chunk to depopulate - * @off: offset to the area to depopulate - * @size: size of the area to depopulate in bytes - * @flush: whether to flush cache and tlb or not - * - * For each cpu, depopulate and unmap pages [@page_start,@page_end) - * from @chunk. If @flush is true, vcache is flushed before unmapping - * and tlb after. - * - * CONTEXT: - * pcpu_alloc_mutex. + * pcpu_alloc_pages - allocates pages for @chunk + * @chunk: target chunk + * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() + * @populated: populated bitmap + * @page_start: page index of the first page to be allocated + * @page_end: page index of the last page to be allocated + 1 + * + * Allocate pages [@page_start,@page_end) into @pages for all units. + * The allocation is for @chunk. Percpu core doesn't care about the + * content of @pages and will pass it verbatim to pcpu_map_pages(). */ -static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, - bool flush) +static int pcpu_alloc_pages(struct pcpu_chunk *chunk, + struct page **pages, unsigned long *populated, + int page_start, int page_end) { - int page_start = PFN_DOWN(off); - int page_end = PFN_UP(off + size); - int unmap_start = -1; - int uninitialized_var(unmap_end); + const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; unsigned int cpu; int i; - for (i = page_start; i < page_end; i++) { - for_each_possible_cpu(cpu) { - struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); + for_each_possible_cpu(cpu) { + for (i = page_start; i < page_end; i++) { + struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; + + *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); + if (!*pagep) { + pcpu_free_pages(chunk, pages, populated, + page_start, page_end); + return -ENOMEM; + } + } + } + return 0; +} - if (!*pagep) - continue; +/** + * pcpu_pre_unmap_flush - flush cache prior to unmapping + * @chunk: chunk the regions to be flushed belongs to + * @page_start: page index of the first page to be flushed + * @page_end: page index of the last page to be flushed + 1 + * + * Pages in [@page_start,@page_end) of @chunk are about to be + * unmapped. Flush cache. As each flushing trial can be very + * expensive, issue flush on the whole region at once rather than + * doing it for each cpu. This could be an overkill but is more + * scalable. + */ +static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, + int page_start, int page_end) +{ + flush_cache_vunmap( + pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), + pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); +} + +static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) +{ + unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); +} - __free_page(*pagep); +/** + * pcpu_unmap_pages - unmap pages out of a pcpu_chunk + * @chunk: chunk of interest + * @pages: pages array which can be used to pass information to free + * @populated: populated bitmap + * @page_start: page index of the first page to unmap + * @page_end: page index of the last page to unmap + 1 + * + * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. + * Corresponding elements in @pages were cleared by the caller and can + * be used to carry information to pcpu_free_pages() which will be + * called after all unmaps are finished. The caller should call + * proper pre/post flush functions. + */ +static void pcpu_unmap_pages(struct pcpu_chunk *chunk, + struct page **pages, unsigned long *populated, + int page_start, int page_end) +{ + unsigned int cpu; + int i; - /* - * If it's partial depopulation, it might get - * populated or depopulated again. Mark the - * page gone. - */ - *pagep = NULL; + for_each_possible_cpu(cpu) { + for (i = page_start; i < page_end; i++) { + struct page *page; - unmap_start = unmap_start < 0 ? i : unmap_start; - unmap_end = i + 1; + page = pcpu_chunk_page(chunk, cpu, i); + WARN_ON(!page); + pages[pcpu_page_idx(cpu, i)] = page; } + __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), + page_end - page_start); } - if (unmap_start >= 0) - pcpu_unmap(chunk, unmap_start, unmap_end, flush); + for (i = page_start; i < page_end; i++) + __clear_bit(i, populated); +} + +/** + * pcpu_post_unmap_tlb_flush - flush TLB after unmapping + * @chunk: pcpu_chunk the regions to be flushed belong to + * @page_start: page index of the first page to be flushed + * @page_end: page index of the last page to be flushed + 1 + * + * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush + * TLB for the regions. This can be skipped if the area is to be + * returned to vmalloc as vmalloc will handle TLB flushing lazily. + * + * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once + * for the whole region. + */ +static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, + int page_start, int page_end) +{ + flush_tlb_kernel_range( + pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), + pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); +} + +static int __pcpu_map_pages(unsigned long addr, struct page **pages, + int nr_pages) +{ + return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, + PAGE_KERNEL, pages); } /** - * pcpu_map - map pages into a pcpu_chunk + * pcpu_map_pages - map pages into a pcpu_chunk * @chunk: chunk of interest + * @pages: pages array containing pages to be mapped + * @populated: populated bitmap * @page_start: page index of the first page to map * @page_end: page index of the last page to map + 1 * - * For each cpu, map pages [@page_start,@page_end) into @chunk. - * vcache is flushed afterwards. + * For each cpu, map pages [@page_start,@page_end) into @chunk. The + * caller is responsible for calling pcpu_post_map_flush() after all + * mappings are complete. + * + * This function is responsible for setting corresponding bits in + * @chunk->populated bitmap and whatever is necessary for reverse + * lookup (addr -> chunk). */ -static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) +static int pcpu_map_pages(struct pcpu_chunk *chunk, + struct page **pages, unsigned long *populated, + int page_start, int page_end) { - unsigned int last = nr_cpu_ids - 1; - unsigned int cpu; - int err; - - /* map must not be done on immutable chunk */ - WARN_ON(chunk->immutable); + unsigned int cpu, tcpu; + int i, err; for_each_possible_cpu(cpu) { - err = map_kernel_range_noflush( - pcpu_chunk_addr(chunk, cpu, page_start), - (page_end - page_start) << PAGE_SHIFT, - PAGE_KERNEL, - pcpu_chunk_pagep(chunk, cpu, page_start)); + err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), + &pages[pcpu_page_idx(cpu, page_start)], + page_end - page_start); if (err < 0) - return err; + goto err; + } + + /* mapping successful, link chunk and mark populated */ + for (i = page_start; i < page_end; i++) { + for_each_possible_cpu(cpu) + pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], + chunk); + __set_bit(i, populated); } - /* flush at once, please read comments in pcpu_unmap() */ - flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), - pcpu_chunk_addr(chunk, last, page_end)); return 0; + +err: + for_each_possible_cpu(tcpu) { + if (tcpu == cpu) + break; + __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), + page_end - page_start); + } + return err; +} + +/** + * pcpu_post_map_flush - flush cache after mapping + * @chunk: pcpu_chunk the regions to be flushed belong to + * @page_start: page index of the first page to be flushed + * @page_end: page index of the last page to be flushed + 1 + * + * Pages [@page_start,@page_end) of @chunk have been mapped. Flush + * cache. + * + * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once + * for the whole region. + */ +static void pcpu_post_map_flush(struct pcpu_chunk *chunk, + int page_start, int page_end) +{ + flush_cache_vmap( + pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), + pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); +} + +/** + * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk + * @chunk: chunk to depopulate + * @off: offset to the area to depopulate + * @size: size of the area to depopulate in bytes + * @flush: whether to flush cache and tlb or not + * + * For each cpu, depopulate and unmap pages [@page_start,@page_end) + * from @chunk. If @flush is true, vcache is flushed before unmapping + * and tlb after. + * + * CONTEXT: + * pcpu_alloc_mutex. + */ +static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) +{ + int page_start = PFN_DOWN(off); + int page_end = PFN_UP(off + size); + struct page **pages; + unsigned long *populated; + int rs, re; + + /* quick path, check whether it's empty already */ + pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { + if (rs == page_start && re == page_end) + return; + break; + } + + /* immutable chunks can't be depopulated */ + WARN_ON(chunk->immutable); + + /* + * If control reaches here, there must have been at least one + * successful population attempt so the temp pages array must + * be available now. + */ + pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); + BUG_ON(!pages); + + /* unmap and free */ + pcpu_pre_unmap_flush(chunk, page_start, page_end); + + pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) + pcpu_unmap_pages(chunk, pages, populated, rs, re); + + /* no need to flush tlb, vmalloc will handle it lazily */ + + pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) + pcpu_free_pages(chunk, pages, populated, rs, re); + + /* commit new bitmap */ + bitmap_copy(chunk->populated, populated, pcpu_unit_pages); } /** @@ -693,58 +933,68 @@ static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) */ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) { - const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; int page_start = PFN_DOWN(off); int page_end = PFN_UP(off + size); - int map_start = -1; - int uninitialized_var(map_end); + int free_end = page_start, unmap_end = page_start; + struct page **pages; + unsigned long *populated; unsigned int cpu; - int i; + int rs, re, rc; - for (i = page_start; i < page_end; i++) { - if (pcpu_chunk_page_occupied(chunk, i)) { - if (map_start >= 0) { - if (pcpu_map(chunk, map_start, map_end)) - goto err; - map_start = -1; - } - continue; - } + /* quick path, check whether all pages are already there */ + pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) { + if (rs == page_start && re == page_end) + goto clear; + break; + } - map_start = map_start < 0 ? i : map_start; - map_end = i + 1; + /* need to allocate and map pages, this chunk can't be immutable */ + WARN_ON(chunk->immutable); - for_each_possible_cpu(cpu) { - struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); + pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); + if (!pages) + return -ENOMEM; - *pagep = alloc_pages_node(cpu_to_node(cpu), - alloc_mask, 0); - if (!*pagep) - goto err; - pcpu_set_page_chunk(*pagep, chunk); - } + /* alloc and map */ + pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { + rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); + if (rc) + goto err_free; + free_end = re; } - if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) - goto err; + pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { + rc = pcpu_map_pages(chunk, pages, populated, rs, re); + if (rc) + goto err_unmap; + unmap_end = re; + } + pcpu_post_map_flush(chunk, page_start, page_end); + /* commit new bitmap */ + bitmap_copy(chunk->populated, populated, pcpu_unit_pages); +clear: for_each_possible_cpu(cpu) - memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, - size); - + memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); return 0; -err: - /* likely under heavy memory pressure, give memory back */ - pcpu_depopulate_chunk(chunk, off, size, true); - return -ENOMEM; + +err_unmap: + pcpu_pre_unmap_flush(chunk, page_start, unmap_end); + pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) + pcpu_unmap_pages(chunk, pages, populated, rs, re); + pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); +err_free: + pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) + pcpu_free_pages(chunk, pages, populated, rs, re); + return rc; } static void free_pcpu_chunk(struct pcpu_chunk *chunk) { if (!chunk) return; - if (chunk->vm) - free_vm_area(chunk->vm); + if (chunk->vms) + pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); kfree(chunk); } @@ -760,10 +1010,11 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); chunk->map_alloc = PCPU_DFL_MAP_ALLOC; chunk->map[chunk->map_used++] = pcpu_unit_size; - chunk->page = chunk->page_ar; - chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC); - if (!chunk->vm) { + chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, + pcpu_nr_groups, pcpu_atom_size, + GFP_KERNEL); + if (!chunk->vms) { free_pcpu_chunk(chunk); return NULL; } @@ -771,6 +1022,7 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) INIT_LIST_HEAD(&chunk->list); chunk->free_size = pcpu_unit_size; chunk->contig_hint = pcpu_unit_size; + chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; return chunk; } @@ -860,7 +1112,8 @@ area_found: mutex_unlock(&pcpu_alloc_mutex); - return __addr_to_pcpu_ptr(chunk->vm->addr + off); + /* return address relative to base address */ + return __addr_to_pcpu_ptr(chunk->base_addr + off); fail_unlock: spin_unlock_irq(&pcpu_lock); @@ -938,12 +1191,13 @@ static void pcpu_reclaim(struct work_struct *work) } spin_unlock_irq(&pcpu_lock); - mutex_unlock(&pcpu_alloc_mutex); list_for_each_entry_safe(chunk, next, &todo, list) { - pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); + pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); free_pcpu_chunk(chunk); } + + mutex_unlock(&pcpu_alloc_mutex); } /** @@ -968,7 +1222,7 @@ void free_percpu(void *ptr) spin_lock_irqsave(&pcpu_lock, flags); chunk = pcpu_chunk_addr_search(addr); - off = addr - chunk->vm->addr; + off = addr - chunk->base_addr; pcpu_free_area(chunk, off); @@ -987,30 +1241,295 @@ void free_percpu(void *ptr) } EXPORT_SYMBOL_GPL(free_percpu); +static inline size_t pcpu_calc_fc_sizes(size_t static_size, + size_t reserved_size, + ssize_t *dyn_sizep) +{ + size_t size_sum; + + size_sum = PFN_ALIGN(static_size + reserved_size + + (*dyn_sizep >= 0 ? *dyn_sizep : 0)); + if (*dyn_sizep != 0) + *dyn_sizep = size_sum - static_size - reserved_size; + + return size_sum; +} + /** - * pcpu_setup_first_chunk - initialize the first percpu chunk - * @get_page_fn: callback to fetch page pointer - * @static_size: the size of static percpu area in bytes + * pcpu_alloc_alloc_info - allocate percpu allocation info + * @nr_groups: the number of groups + * @nr_units: the number of units + * + * Allocate ai which is large enough for @nr_groups groups containing + * @nr_units units. The returned ai's groups[0].cpu_map points to the + * cpu_map array which is long enough for @nr_units and filled with + * NR_CPUS. It's the caller's responsibility to initialize cpu_map + * pointer of other groups. + * + * RETURNS: + * Pointer to the allocated pcpu_alloc_info on success, NULL on + * failure. + */ +struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, + int nr_units) +{ + struct pcpu_alloc_info *ai; + size_t base_size, ai_size; + void *ptr; + int unit; + + base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), + __alignof__(ai->groups[0].cpu_map[0])); + ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); + + ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); + if (!ptr) + return NULL; + ai = ptr; + ptr += base_size; + + ai->groups[0].cpu_map = ptr; + + for (unit = 0; unit < nr_units; unit++) + ai->groups[0].cpu_map[unit] = NR_CPUS; + + ai->nr_groups = nr_groups; + ai->__ai_size = PFN_ALIGN(ai_size); + + return ai; +} + +/** + * pcpu_free_alloc_info - free percpu allocation info + * @ai: pcpu_alloc_info to free + * + * Free @ai which was allocated by pcpu_alloc_alloc_info(). + */ +void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) +{ + free_bootmem(__pa(ai), ai->__ai_size); +} + +/** + * pcpu_build_alloc_info - build alloc_info considering distances between CPUs * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: free size for dynamic allocation in bytes, -1 for auto - * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto - * @base_addr: mapped address, NULL for auto - * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary + * @atom_size: allocation atom size + * @cpu_distance_fn: callback to determine distance between cpus, optional + * + * This function determines grouping of units, their mappings to cpus + * and other parameters considering needed percpu size, allocation + * atom size and distances between CPUs. + * + * Groups are always mutliples of atom size and CPUs which are of + * LOCAL_DISTANCE both ways are grouped together and share space for + * units in the same group. The returned configuration is guaranteed + * to have CPUs on different nodes on different groups and >=75% usage + * of allocated virtual address space. + * + * RETURNS: + * On success, pointer to the new allocation_info is returned. On + * failure, ERR_PTR value is returned. + */ +struct pcpu_alloc_info * __init pcpu_build_alloc_info( + size_t reserved_size, ssize_t dyn_size, + size_t atom_size, + pcpu_fc_cpu_distance_fn_t cpu_distance_fn) +{ + static int group_map[NR_CPUS] __initdata; + static int group_cnt[NR_CPUS] __initdata; + const size_t static_size = __per_cpu_end - __per_cpu_start; + int group_cnt_max = 0, nr_groups = 1, nr_units = 0; + size_t size_sum, min_unit_size, alloc_size; + int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ + int last_allocs, group, unit; + unsigned int cpu, tcpu; + struct pcpu_alloc_info *ai; + unsigned int *cpu_map; + + /* + * Determine min_unit_size, alloc_size and max_upa such that + * alloc_size is multiple of atom_size and is the smallest + * which can accomodate 4k aligned segments which are equal to + * or larger than min_unit_size. + */ + size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); + min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); + + alloc_size = roundup(min_unit_size, atom_size); + upa = alloc_size / min_unit_size; + while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) + upa--; + max_upa = upa; + + /* group cpus according to their proximity */ + for_each_possible_cpu(cpu) { + group = 0; + next_group: + for_each_possible_cpu(tcpu) { + if (cpu == tcpu) + break; + if (group_map[tcpu] == group && cpu_distance_fn && + (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || + cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { + group++; + nr_groups = max(nr_groups, group + 1); + goto next_group; + } + } + group_map[cpu] = group; + group_cnt[group]++; + group_cnt_max = max(group_cnt_max, group_cnt[group]); + } + + /* + * Expand unit size until address space usage goes over 75% + * and then as much as possible without using more address + * space. + */ + last_allocs = INT_MAX; + for (upa = max_upa; upa; upa--) { + int allocs = 0, wasted = 0; + + if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) + continue; + + for (group = 0; group < nr_groups; group++) { + int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); + allocs += this_allocs; + wasted += this_allocs * upa - group_cnt[group]; + } + + /* + * Don't accept if wastage is over 25%. The + * greater-than comparison ensures upa==1 always + * passes the following check. + */ + if (wasted > num_possible_cpus() / 3) + continue; + + /* and then don't consume more memory */ + if (allocs > last_allocs) + break; + last_allocs = allocs; + best_upa = upa; + } + upa = best_upa; + + /* allocate and fill alloc_info */ + for (group = 0; group < nr_groups; group++) + nr_units += roundup(group_cnt[group], upa); + + ai = pcpu_alloc_alloc_info(nr_groups, nr_units); + if (!ai) + return ERR_PTR(-ENOMEM); + cpu_map = ai->groups[0].cpu_map; + + for (group = 0; group < nr_groups; group++) { + ai->groups[group].cpu_map = cpu_map; + cpu_map += roundup(group_cnt[group], upa); + } + + ai->static_size = static_size; + ai->reserved_size = reserved_size; + ai->dyn_size = dyn_size; + ai->unit_size = alloc_size / upa; + ai->atom_size = atom_size; + ai->alloc_size = alloc_size; + + for (group = 0, unit = 0; group_cnt[group]; group++) { + struct pcpu_group_info *gi = &ai->groups[group]; + + /* + * Initialize base_offset as if all groups are located + * back-to-back. The caller should update this to + * reflect actual allocation. + */ + gi->base_offset = unit * ai->unit_size; + + for_each_possible_cpu(cpu) + if (group_map[cpu] == group) + gi->cpu_map[gi->nr_units++] = cpu; + gi->nr_units = roundup(gi->nr_units, upa); + unit += gi->nr_units; + } + BUG_ON(unit != nr_units); + + return ai; +} + +/** + * pcpu_dump_alloc_info - print out information about pcpu_alloc_info + * @lvl: loglevel + * @ai: allocation info to dump + * + * Print out information about @ai using loglevel @lvl. + */ +static void pcpu_dump_alloc_info(const char *lvl, + const struct pcpu_alloc_info *ai) +{ + int group_width = 1, cpu_width = 1, width; + char empty_str[] = "--------"; + int alloc = 0, alloc_end = 0; + int group, v; + int upa, apl; /* units per alloc, allocs per line */ + + v = ai->nr_groups; + while (v /= 10) + group_width++; + + v = num_possible_cpus(); + while (v /= 10) + cpu_width++; + empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; + + upa = ai->alloc_size / ai->unit_size; + width = upa * (cpu_width + 1) + group_width + 3; + apl = rounddown_pow_of_two(max(60 / width, 1)); + + printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", + lvl, ai->static_size, ai->reserved_size, ai->dyn_size, + ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); + + for (group = 0; group < ai->nr_groups; group++) { + const struct pcpu_group_info *gi = &ai->groups[group]; + int unit = 0, unit_end = 0; + + BUG_ON(gi->nr_units % upa); + for (alloc_end += gi->nr_units / upa; + alloc < alloc_end; alloc++) { + if (!(alloc % apl)) { + printk("\n"); + printk("%spcpu-alloc: ", lvl); + } + printk("[%0*d] ", group_width, group); + + for (unit_end += upa; unit < unit_end; unit++) + if (gi->cpu_map[unit] != NR_CPUS) + printk("%0*d ", cpu_width, + gi->cpu_map[unit]); + else + printk("%s ", empty_str); + } + } + printk("\n"); +} + +/** + * pcpu_setup_first_chunk - initialize the first percpu chunk + * @ai: pcpu_alloc_info describing how to percpu area is shaped + * @base_addr: mapped address * * Initialize the first percpu chunk which contains the kernel static * perpcu area. This function is to be called from arch percpu area - * setup path. The first two parameters are mandatory. The rest are - * optional. - * - * @get_page_fn() should return pointer to percpu page given cpu - * number and page number. It should at least return enough pages to - * cover the static area. The returned pages for static area should - * have been initialized with valid data. If @unit_size is specified, - * it can also return pages after the static area. NULL return - * indicates end of pages for the cpu. Note that @get_page_fn() must - * return the same number of pages for all cpus. - * - * @reserved_size, if non-zero, specifies the amount of bytes to + * setup path. + * + * @ai contains all information necessary to initialize the first + * chunk and prime the dynamic percpu allocator. + * + * @ai->static_size is the size of static percpu area. + * + * @ai->reserved_size, if non-zero, specifies the amount of bytes to * reserve after the static area in the first chunk. This reserves * the first chunk such that it's available only through reserved * percpu allocation. This is primarily used to serve module percpu @@ -1018,22 +1537,29 @@ EXPORT_SYMBOL_GPL(free_percpu); * limited offset range for symbol relocations to guarantee module * percpu symbols fall inside the relocatable range. * - * @dyn_size, if non-negative, determines the number of bytes - * available for dynamic allocation in the first chunk. Specifying - * non-negative value makes percpu leave alone the area beyond - * @static_size + @reserved_size + @dyn_size. + * @ai->dyn_size determines the number of bytes available for dynamic + * allocation in the first chunk. The area between @ai->static_size + + * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. * - * @unit_size, if non-negative, specifies unit size and must be - * aligned to PAGE_SIZE and equal to or larger than @static_size + - * @reserved_size + if non-negative, @dyn_size. + * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE + * and equal to or larger than @ai->static_size + @ai->reserved_size + + * @ai->dyn_size. * - * Non-null @base_addr means that the caller already allocated virtual - * region for the first chunk and mapped it. percpu must not mess - * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL - * @populate_pte_fn doesn't make any sense. + * @ai->atom_size is the allocation atom size and used as alignment + * for vm areas. * - * @populate_pte_fn is used to populate the pagetable. NULL means the - * caller already populated the pagetable. + * @ai->alloc_size is the allocation size and always multiple of + * @ai->atom_size. This is larger than @ai->atom_size if + * @ai->unit_size is larger than @ai->atom_size. + * + * @ai->nr_groups and @ai->groups describe virtual memory layout of + * percpu areas. Units which should be colocated are put into the + * same group. Dynamic VM areas will be allocated according to these + * groupings. If @ai->nr_groups is zero, a single group containing + * all units is assumed. + * + * The caller should have mapped the first chunk at @base_addr and + * copied static data to each unit. * * If the first chunk ends up with both reserved and dynamic areas, it * is served by two chunks - one to serve the core static and reserved @@ -1043,49 +1569,83 @@ EXPORT_SYMBOL_GPL(free_percpu); * and available for dynamic allocation like any other chunks. * * RETURNS: - * The determined pcpu_unit_size which can be used to initialize - * percpu access. + * 0 on success, -errno on failure. */ -size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, - size_t static_size, size_t reserved_size, - ssize_t dyn_size, ssize_t unit_size, - void *base_addr, - pcpu_populate_pte_fn_t populate_pte_fn) +int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, + void *base_addr) { - static struct vm_struct first_vm; static int smap[2], dmap[2]; - size_t size_sum = static_size + reserved_size + - (dyn_size >= 0 ? dyn_size : 0); + size_t dyn_size = ai->dyn_size; + size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; struct pcpu_chunk *schunk, *dchunk = NULL; + unsigned long *group_offsets; + size_t *group_sizes; + unsigned long *unit_off; unsigned int cpu; - int nr_pages; - int err, i; + int *unit_map; + int group, unit, i; - /* santiy checks */ + /* sanity checks */ BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); - BUG_ON(!static_size); - if (unit_size >= 0) { - BUG_ON(unit_size < size_sum); - BUG_ON(unit_size & ~PAGE_MASK); - BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); - } else - BUG_ON(base_addr); - BUG_ON(base_addr && populate_pte_fn); - - if (unit_size >= 0) - pcpu_unit_pages = unit_size >> PAGE_SHIFT; - else - pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, - PFN_UP(size_sum)); + BUG_ON(ai->nr_groups <= 0); + BUG_ON(!ai->static_size); + BUG_ON(!base_addr); + BUG_ON(ai->unit_size < size_sum); + BUG_ON(ai->unit_size & ~PAGE_MASK); + BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); + + pcpu_dump_alloc_info(KERN_DEBUG, ai); + + /* process group information and build config tables accordingly */ + group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); + group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); + unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); + unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); + + for (cpu = 0; cpu < nr_cpu_ids; cpu++) + unit_map[cpu] = NR_CPUS; + pcpu_first_unit_cpu = NR_CPUS; + + for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { + const struct pcpu_group_info *gi = &ai->groups[group]; + + group_offsets[group] = gi->base_offset; + group_sizes[group] = gi->nr_units * ai->unit_size; + + for (i = 0; i < gi->nr_units; i++) { + cpu = gi->cpu_map[i]; + if (cpu == NR_CPUS) + continue; - pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; - pcpu_chunk_size = nr_cpu_ids * pcpu_unit_size; - pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) - + nr_cpu_ids * pcpu_unit_pages * sizeof(struct page *); + BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu)); + BUG_ON(unit_map[cpu] != NR_CPUS); - if (dyn_size < 0) - dyn_size = pcpu_unit_size - static_size - reserved_size; + unit_map[cpu] = unit + i; + unit_off[cpu] = gi->base_offset + i * ai->unit_size; + + if (pcpu_first_unit_cpu == NR_CPUS) + pcpu_first_unit_cpu = cpu; + } + } + pcpu_last_unit_cpu = cpu; + pcpu_nr_units = unit; + + for_each_possible_cpu(cpu) + BUG_ON(unit_map[cpu] == NR_CPUS); + + pcpu_nr_groups = ai->nr_groups; + pcpu_group_offsets = group_offsets; + pcpu_group_sizes = group_sizes; + pcpu_unit_map = unit_map; + pcpu_unit_offsets = unit_off; + + /* determine basic parameters */ + pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; + pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; + pcpu_atom_size = ai->atom_size; + pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + + BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); /* * Allocate chunk slots. The additional last slot is for @@ -1105,189 +1665,351 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, */ schunk = alloc_bootmem(pcpu_chunk_struct_size); INIT_LIST_HEAD(&schunk->list); - schunk->vm = &first_vm; + schunk->base_addr = base_addr; schunk->map = smap; schunk->map_alloc = ARRAY_SIZE(smap); - schunk->page = schunk->page_ar; + schunk->immutable = true; + bitmap_fill(schunk->populated, pcpu_unit_pages); - if (reserved_size) { - schunk->free_size = reserved_size; + if (ai->reserved_size) { + schunk->free_size = ai->reserved_size; pcpu_reserved_chunk = schunk; - pcpu_reserved_chunk_limit = static_size + reserved_size; + pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; } else { schunk->free_size = dyn_size; dyn_size = 0; /* dynamic area covered */ } schunk->contig_hint = schunk->free_size; - schunk->map[schunk->map_used++] = -static_size; + schunk->map[schunk->map_used++] = -ai->static_size; if (schunk->free_size) schunk->map[schunk->map_used++] = schunk->free_size; /* init dynamic chunk if necessary */ if (dyn_size) { - dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); + dchunk = alloc_bootmem(pcpu_chunk_struct_size); INIT_LIST_HEAD(&dchunk->list); - dchunk->vm = &first_vm; + dchunk->base_addr = base_addr; dchunk->map = dmap; dchunk->map_alloc = ARRAY_SIZE(dmap); - dchunk->page = schunk->page_ar; /* share page map with schunk */ + dchunk->immutable = true; + bitmap_fill(dchunk->populated, pcpu_unit_pages); dchunk->contig_hint = dchunk->free_size = dyn_size; dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; dchunk->map[dchunk->map_used++] = dchunk->free_size; } - /* allocate vm address */ - first_vm.flags = VM_ALLOC; - first_vm.size = pcpu_chunk_size; - - if (!base_addr) - vm_area_register_early(&first_vm, PAGE_SIZE); - else { - /* - * Pages already mapped. No need to remap into - * vmalloc area. In this case the first chunks can't - * be mapped or unmapped by percpu and are marked - * immutable. - */ - first_vm.addr = base_addr; - schunk->immutable = true; - if (dchunk) - dchunk->immutable = true; - } - - /* assign pages */ - nr_pages = -1; - for_each_possible_cpu(cpu) { - for (i = 0; i < pcpu_unit_pages; i++) { - struct page *page = get_page_fn(cpu, i); - - if (!page) - break; - *pcpu_chunk_pagep(schunk, cpu, i) = page; - } - - BUG_ON(i < PFN_UP(static_size)); - - if (nr_pages < 0) - nr_pages = i; - else - BUG_ON(nr_pages != i); - } - - /* map them */ - if (populate_pte_fn) { - for_each_possible_cpu(cpu) - for (i = 0; i < nr_pages; i++) - populate_pte_fn(pcpu_chunk_addr(schunk, - cpu, i)); - - err = pcpu_map(schunk, 0, nr_pages); - if (err) - panic("failed to setup static percpu area, err=%d\n", - err); - } - /* link the first chunk in */ pcpu_first_chunk = dchunk ?: schunk; pcpu_chunk_relocate(pcpu_first_chunk, -1); /* we're done */ - pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); - return pcpu_unit_size; + pcpu_base_addr = base_addr; + return 0; } -/* - * Embedding first chunk setup helper. - */ -static void *pcpue_ptr __initdata; -static size_t pcpue_size __initdata; -static size_t pcpue_unit_size __initdata; +const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { + [PCPU_FC_AUTO] = "auto", + [PCPU_FC_EMBED] = "embed", + [PCPU_FC_PAGE] = "page", +}; -static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) -{ - size_t off = (size_t)pageno << PAGE_SHIFT; +enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; - if (off >= pcpue_size) - return NULL; +static int __init percpu_alloc_setup(char *str) +{ + if (0) + /* nada */; +#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK + else if (!strcmp(str, "embed")) + pcpu_chosen_fc = PCPU_FC_EMBED; +#endif +#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK + else if (!strcmp(str, "page")) + pcpu_chosen_fc = PCPU_FC_PAGE; +#endif + else + pr_warning("PERCPU: unknown allocator %s specified\n", str); - return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); + return 0; } +early_param("percpu_alloc", percpu_alloc_setup); +#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ + !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) /** * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem - * @static_size: the size of static percpu area in bytes * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: free size for dynamic allocation in bytes, -1 for auto - * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto + * @atom_size: allocation atom size + * @cpu_distance_fn: callback to determine distance between cpus, optional + * @alloc_fn: function to allocate percpu page + * @free_fn: funtion to free percpu page * * This is a helper to ease setting up embedded first percpu chunk and * can be called where pcpu_setup_first_chunk() is expected. * * If this function is used to setup the first chunk, it is allocated - * as a contiguous area using bootmem allocator and used as-is without - * being mapped into vmalloc area. This enables the first chunk to - * piggy back on the linear physical mapping which often uses larger - * page size. + * by calling @alloc_fn and used as-is without being mapped into + * vmalloc area. Allocations are always whole multiples of @atom_size + * aligned to @atom_size. + * + * This enables the first chunk to piggy back on the linear physical + * mapping which often uses larger page size. Please note that this + * can result in very sparse cpu->unit mapping on NUMA machines thus + * requiring large vmalloc address space. Don't use this allocator if + * vmalloc space is not orders of magnitude larger than distances + * between node memory addresses (ie. 32bit NUMA machines). * * When @dyn_size is positive, dynamic area might be larger than - * specified to fill page alignment. Also, when @dyn_size is auto, - * @dyn_size does not fill the whole first chunk but only what's - * necessary for page alignment after static and reserved areas. + * specified to fill page alignment. When @dyn_size is auto, + * @dyn_size is just big enough to fill page alignment after static + * and reserved areas. * * If the needed size is smaller than the minimum or specified unit - * size, the leftover is returned to the bootmem allocator. + * size, the leftover is returned using @free_fn. * * RETURNS: - * The determined pcpu_unit_size which can be used to initialize - * percpu access on success, -errno on failure. + * 0 on success, -errno on failure. */ -ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, - ssize_t dyn_size, ssize_t unit_size) +int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, + size_t atom_size, + pcpu_fc_cpu_distance_fn_t cpu_distance_fn, + pcpu_fc_alloc_fn_t alloc_fn, + pcpu_fc_free_fn_t free_fn) { - size_t chunk_size; - unsigned int cpu; + void *base = (void *)ULONG_MAX; + void **areas = NULL; + struct pcpu_alloc_info *ai; + size_t size_sum, areas_size; + int group, i, rc; + + ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, + cpu_distance_fn); + if (IS_ERR(ai)) + return PTR_ERR(ai); + + size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; + areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); + + areas = alloc_bootmem_nopanic(areas_size); + if (!areas) { + rc = -ENOMEM; + goto out_free; + } - /* determine parameters and allocate */ - pcpue_size = PFN_ALIGN(static_size + reserved_size + - (dyn_size >= 0 ? dyn_size : 0)); - if (dyn_size != 0) - dyn_size = pcpue_size - static_size - reserved_size; - - if (unit_size >= 0) { - BUG_ON(unit_size < pcpue_size); - pcpue_unit_size = unit_size; - } else - pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); - - chunk_size = pcpue_unit_size * nr_cpu_ids; - - pcpue_ptr = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE, - __pa(MAX_DMA_ADDRESS)); - if (!pcpue_ptr) { - pr_warning("PERCPU: failed to allocate %zu bytes for " - "embedding\n", chunk_size); - return -ENOMEM; + /* allocate, copy and determine base address */ + for (group = 0; group < ai->nr_groups; group++) { + struct pcpu_group_info *gi = &ai->groups[group]; + unsigned int cpu = NR_CPUS; + void *ptr; + + for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) + cpu = gi->cpu_map[i]; + BUG_ON(cpu == NR_CPUS); + + /* allocate space for the whole group */ + ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); + if (!ptr) { + rc = -ENOMEM; + goto out_free_areas; + } + areas[group] = ptr; + + base = min(ptr, base); + + for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { + if (gi->cpu_map[i] == NR_CPUS) { + /* unused unit, free whole */ + free_fn(ptr, ai->unit_size); + continue; + } + /* copy and return the unused part */ + memcpy(ptr, __per_cpu_load, ai->static_size); + free_fn(ptr + size_sum, ai->unit_size - size_sum); + } } - /* return the leftover and copy */ - for (cpu = 0; cpu < nr_cpu_ids; cpu++) { - void *ptr = pcpue_ptr + cpu * pcpue_unit_size; + /* base address is now known, determine group base offsets */ + for (group = 0; group < ai->nr_groups; group++) + ai->groups[group].base_offset = areas[group] - base; + + pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", + PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, + ai->dyn_size, ai->unit_size); + + rc = pcpu_setup_first_chunk(ai, base); + goto out_free; + +out_free_areas: + for (group = 0; group < ai->nr_groups; group++) + free_fn(areas[group], + ai->groups[group].nr_units * ai->unit_size); +out_free: + pcpu_free_alloc_info(ai); + if (areas) + free_bootmem(__pa(areas), areas_size); + return rc; +} +#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || + !CONFIG_HAVE_SETUP_PER_CPU_AREA */ + +#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK +/** + * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages + * @reserved_size: the size of reserved percpu area in bytes + * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE + * @free_fn: funtion to free percpu page, always called with PAGE_SIZE + * @populate_pte_fn: function to populate pte + * + * This is a helper to ease setting up page-remapped first percpu + * chunk and can be called where pcpu_setup_first_chunk() is expected. + * + * This is the basic allocator. Static percpu area is allocated + * page-by-page into vmalloc area. + * + * RETURNS: + * 0 on success, -errno on failure. + */ +int __init pcpu_page_first_chunk(size_t reserved_size, + pcpu_fc_alloc_fn_t alloc_fn, + pcpu_fc_free_fn_t free_fn, + pcpu_fc_populate_pte_fn_t populate_pte_fn) +{ + static struct vm_struct vm; + struct pcpu_alloc_info *ai; + char psize_str[16]; + int unit_pages; + size_t pages_size; + struct page **pages; + int unit, i, j, rc; + + snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); + + ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); + if (IS_ERR(ai)) + return PTR_ERR(ai); + BUG_ON(ai->nr_groups != 1); + BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); + + unit_pages = ai->unit_size >> PAGE_SHIFT; + + /* unaligned allocations can't be freed, round up to page size */ + pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * + sizeof(pages[0])); + pages = alloc_bootmem(pages_size); + + /* allocate pages */ + j = 0; + for (unit = 0; unit < num_possible_cpus(); unit++) + for (i = 0; i < unit_pages; i++) { + unsigned int cpu = ai->groups[0].cpu_map[unit]; + void *ptr; + + ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); + if (!ptr) { + pr_warning("PERCPU: failed to allocate %s page " + "for cpu%u\n", psize_str, cpu); + goto enomem; + } + pages[j++] = virt_to_page(ptr); + } + + /* allocate vm area, map the pages and copy static data */ + vm.flags = VM_ALLOC; + vm.size = num_possible_cpus() * ai->unit_size; + vm_area_register_early(&vm, PAGE_SIZE); + + for (unit = 0; unit < num_possible_cpus(); unit++) { + unsigned long unit_addr = + (unsigned long)vm.addr + unit * ai->unit_size; + + for (i = 0; i < unit_pages; i++) + populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); + + /* pte already populated, the following shouldn't fail */ + rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], + unit_pages); + if (rc < 0) + panic("failed to map percpu area, err=%d\n", rc); - if (cpu_possible(cpu)) { - free_bootmem(__pa(ptr + pcpue_size), - pcpue_unit_size - pcpue_size); - memcpy(ptr, __per_cpu_load, static_size); - } else - free_bootmem(__pa(ptr), pcpue_unit_size); + /* + * FIXME: Archs with virtual cache should flush local + * cache for the linear mapping here - something + * equivalent to flush_cache_vmap() on the local cpu. + * flush_cache_vmap() can't be used as most supporting + * data structures are not set up yet. + */ + + /* copy static data */ + memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); } /* we're ready, commit */ - pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", - pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); + pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", + unit_pages, psize_str, vm.addr, ai->static_size, + ai->reserved_size, ai->dyn_size); + + rc = pcpu_setup_first_chunk(ai, vm.addr); + goto out_free_ar; + +enomem: + while (--j >= 0) + free_fn(page_address(pages[j]), PAGE_SIZE); + rc = -ENOMEM; +out_free_ar: + free_bootmem(__pa(pages), pages_size); + pcpu_free_alloc_info(ai); + return rc; +} +#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ + +/* + * Generic percpu area setup. + * + * The embedding helper is used because its behavior closely resembles + * the original non-dynamic generic percpu area setup. This is + * important because many archs have addressing restrictions and might + * fail if the percpu area is located far away from the previous + * location. As an added bonus, in non-NUMA cases, embedding is + * generally a good idea TLB-wise because percpu area can piggy back + * on the physical linear memory mapping which uses large page + * mappings on applicable archs. + */ +#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA +unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; +EXPORT_SYMBOL(__per_cpu_offset); + +static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, + size_t align) +{ + return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); +} - return pcpu_setup_first_chunk(pcpue_get_page, static_size, - reserved_size, dyn_size, - pcpue_unit_size, pcpue_ptr, NULL); +static void __init pcpu_dfl_fc_free(void *ptr, size_t size) +{ + free_bootmem(__pa(ptr), size); +} + +void __init setup_per_cpu_areas(void) +{ + unsigned long delta; + unsigned int cpu; + int rc; + + /* + * Always reserve area for module percpu variables. That's + * what the legacy allocator did. + */ + rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, + PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, + pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); + if (rc < 0) + panic("Failed to initialized percpu areas."); + + delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; + for_each_possible_cpu(cpu) + __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; } +#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ diff --git a/mm/quicklist.c b/mm/quicklist.c index e66d07d1b4f..6eedf7e473d 100644 --- a/mm/quicklist.c +++ b/mm/quicklist.c @@ -19,7 +19,7 @@ #include <linux/module.h> #include <linux/quicklist.h> -DEFINE_PER_CPU(struct quicklist, quicklist)[CONFIG_NR_QUICK]; +DEFINE_PER_CPU(struct quicklist [CONFIG_NR_QUICK], quicklist); #define FRACTION_OF_NODE_MEM 16 diff --git a/mm/slub.c b/mm/slub.c index b9f1491a58a..dc9765bb49d 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -2091,8 +2091,8 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) */ #define NR_KMEM_CACHE_CPU 100 -static DEFINE_PER_CPU(struct kmem_cache_cpu, - kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; +static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU], + kmem_cache_cpu); static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); diff --git a/mm/vmalloc.c b/mm/vmalloc.c index f8189a4b3e1..204b8243d8a 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -265,6 +265,7 @@ struct vmap_area { static DEFINE_SPINLOCK(vmap_area_lock); static struct rb_root vmap_area_root = RB_ROOT; static LIST_HEAD(vmap_area_list); +static unsigned long vmap_area_pcpu_hole; static struct vmap_area *__find_vmap_area(unsigned long addr) { @@ -431,6 +432,15 @@ static void __free_vmap_area(struct vmap_area *va) RB_CLEAR_NODE(&va->rb_node); list_del_rcu(&va->list); + /* + * Track the highest possible candidate for pcpu area + * allocation. Areas outside of vmalloc area can be returned + * here too, consider only end addresses which fall inside + * vmalloc area proper. + */ + if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) + vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); + call_rcu(&va->rcu_head, rcu_free_va); } @@ -1038,6 +1048,9 @@ void __init vmalloc_init(void) va->va_end = va->va_start + tmp->size; __insert_vmap_area(va); } + + vmap_area_pcpu_hole = VMALLOC_END; + vmap_initialized = true; } @@ -1122,13 +1135,34 @@ EXPORT_SYMBOL_GPL(map_vm_area); DEFINE_RWLOCK(vmlist_lock); struct vm_struct *vmlist; +static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, + unsigned long flags, void *caller) +{ + struct vm_struct *tmp, **p; + + vm->flags = flags; + vm->addr = (void *)va->va_start; + vm->size = va->va_end - va->va_start; + vm->caller = caller; + va->private = vm; + va->flags |= VM_VM_AREA; + + write_lock(&vmlist_lock); + for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { + if (tmp->addr >= vm->addr) + break; + } + vm->next = *p; + *p = vm; + write_unlock(&vmlist_lock); +} + static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, void *caller) { static struct vmap_area *va; struct vm_struct *area; - struct vm_struct *tmp, **p; unsigned long align = 1; BUG_ON(in_interrupt()); @@ -1147,7 +1181,7 @@ static struct vm_struct *__get_vm_area_node(unsigned long size, if (unlikely(!size)) return NULL; - area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); + area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; @@ -1162,25 +1196,7 @@ static struct vm_struct *__get_vm_area_node(unsigned long size, return NULL; } - area->flags = flags; - area->addr = (void *)va->va_start; - area->size = size; - area->pages = NULL; - area->nr_pages = 0; - area->phys_addr = 0; - area->caller = caller; - va->private = area; - va->flags |= VM_VM_AREA; - - write_lock(&vmlist_lock); - for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { - if (tmp->addr >= area->addr) - break; - } - area->next = *p; - *p = area; - write_unlock(&vmlist_lock); - + insert_vmalloc_vm(area, va, flags, caller); return area; } @@ -1818,6 +1834,286 @@ void free_vm_area(struct vm_struct *area) } EXPORT_SYMBOL_GPL(free_vm_area); +static struct vmap_area *node_to_va(struct rb_node *n) +{ + return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; +} + +/** + * pvm_find_next_prev - find the next and prev vmap_area surrounding @end + * @end: target address + * @pnext: out arg for the next vmap_area + * @pprev: out arg for the previous vmap_area + * + * Returns: %true if either or both of next and prev are found, + * %false if no vmap_area exists + * + * Find vmap_areas end addresses of which enclose @end. ie. if not + * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. + */ +static bool pvm_find_next_prev(unsigned long end, + struct vmap_area **pnext, + struct vmap_area **pprev) +{ + struct rb_node *n = vmap_area_root.rb_node; + struct vmap_area *va = NULL; + + while (n) { + va = rb_entry(n, struct vmap_area, rb_node); + if (end < va->va_end) + n = n->rb_left; + else if (end > va->va_end) + n = n->rb_right; + else + break; + } + + if (!va) + return false; + + if (va->va_end > end) { + *pnext = va; + *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); + } else { + *pprev = va; + *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); + } + return true; +} + +/** + * pvm_determine_end - find the highest aligned address between two vmap_areas + * @pnext: in/out arg for the next vmap_area + * @pprev: in/out arg for the previous vmap_area + * @align: alignment + * + * Returns: determined end address + * + * Find the highest aligned address between *@pnext and *@pprev below + * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned + * down address is between the end addresses of the two vmap_areas. + * + * Please note that the address returned by this function may fall + * inside *@pnext vmap_area. The caller is responsible for checking + * that. + */ +static unsigned long pvm_determine_end(struct vmap_area **pnext, + struct vmap_area **pprev, + unsigned long align) +{ + const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); + unsigned long addr; + + if (*pnext) + addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); + else + addr = vmalloc_end; + + while (*pprev && (*pprev)->va_end > addr) { + *pnext = *pprev; + *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); + } + + return addr; +} + +/** + * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator + * @offsets: array containing offset of each area + * @sizes: array containing size of each area + * @nr_vms: the number of areas to allocate + * @align: alignment, all entries in @offsets and @sizes must be aligned to this + * @gfp_mask: allocation mask + * + * Returns: kmalloc'd vm_struct pointer array pointing to allocated + * vm_structs on success, %NULL on failure + * + * Percpu allocator wants to use congruent vm areas so that it can + * maintain the offsets among percpu areas. This function allocates + * congruent vmalloc areas for it. These areas tend to be scattered + * pretty far, distance between two areas easily going up to + * gigabytes. To avoid interacting with regular vmallocs, these areas + * are allocated from top. + * + * Despite its complicated look, this allocator is rather simple. It + * does everything top-down and scans areas from the end looking for + * matching slot. While scanning, if any of the areas overlaps with + * existing vmap_area, the base address is pulled down to fit the + * area. Scanning is repeated till all the areas fit and then all + * necessary data structres are inserted and the result is returned. + */ +struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, + const size_t *sizes, int nr_vms, + size_t align, gfp_t gfp_mask) +{ + const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); + const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); + struct vmap_area **vas, *prev, *next; + struct vm_struct **vms; + int area, area2, last_area, term_area; + unsigned long base, start, end, last_end; + bool purged = false; + + gfp_mask &= GFP_RECLAIM_MASK; + + /* verify parameters and allocate data structures */ + BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); + for (last_area = 0, area = 0; area < nr_vms; area++) { + start = offsets[area]; + end = start + sizes[area]; + + /* is everything aligned properly? */ + BUG_ON(!IS_ALIGNED(offsets[area], align)); + BUG_ON(!IS_ALIGNED(sizes[area], align)); + + /* detect the area with the highest address */ + if (start > offsets[last_area]) + last_area = area; + + for (area2 = 0; area2 < nr_vms; area2++) { + unsigned long start2 = offsets[area2]; + unsigned long end2 = start2 + sizes[area2]; + + if (area2 == area) + continue; + + BUG_ON(start2 >= start && start2 < end); + BUG_ON(end2 <= end && end2 > start); + } + } + last_end = offsets[last_area] + sizes[last_area]; + + if (vmalloc_end - vmalloc_start < last_end) { + WARN_ON(true); + return NULL; + } + + vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); + vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); + if (!vas || !vms) + goto err_free; + + for (area = 0; area < nr_vms; area++) { + vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); + vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); + if (!vas[area] || !vms[area]) + goto err_free; + } +retry: + spin_lock(&vmap_area_lock); + + /* start scanning - we scan from the top, begin with the last area */ + area = term_area = last_area; + start = offsets[area]; + end = start + sizes[area]; + + if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { + base = vmalloc_end - last_end; + goto found; + } + base = pvm_determine_end(&next, &prev, align) - end; + + while (true) { + BUG_ON(next && next->va_end <= base + end); + BUG_ON(prev && prev->va_end > base + end); + + /* + * base might have underflowed, add last_end before + * comparing. + */ + if (base + last_end < vmalloc_start + last_end) { + spin_unlock(&vmap_area_lock); + if (!purged) { + purge_vmap_area_lazy(); + purged = true; + goto retry; + } + goto err_free; + } + + /* + * If next overlaps, move base downwards so that it's + * right below next and then recheck. + */ + if (next && next->va_start < base + end) { + base = pvm_determine_end(&next, &prev, align) - end; + term_area = area; + continue; + } + + /* + * If prev overlaps, shift down next and prev and move + * base so that it's right below new next and then + * recheck. + */ + if (prev && prev->va_end > base + start) { + next = prev; + prev = node_to_va(rb_prev(&next->rb_node)); + base = pvm_determine_end(&next, &prev, align) - end; + term_area = area; + continue; + } + + /* + * This area fits, move on to the previous one. If + * the previous one is the terminal one, we're done. + */ + area = (area + nr_vms - 1) % nr_vms; + if (area == term_area) + break; + start = offsets[area]; + end = start + sizes[area]; + pvm_find_next_prev(base + end, &next, &prev); + } +found: + /* we've found a fitting base, insert all va's */ + for (area = 0; area < nr_vms; area++) { + struct vmap_area *va = vas[area]; + + va->va_start = base + offsets[area]; + va->va_end = va->va_start + sizes[area]; + __insert_vmap_area(va); + } + + vmap_area_pcpu_hole = base + offsets[last_area]; + + spin_unlock(&vmap_area_lock); + + /* insert all vm's */ + for (area = 0; area < nr_vms; area++) + insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, + pcpu_get_vm_areas); + + kfree(vas); + return vms; + +err_free: + for (area = 0; area < nr_vms; area++) { + if (vas) + kfree(vas[area]); + if (vms) + kfree(vms[area]); + } + kfree(vas); + kfree(vms); + return NULL; +} + +/** + * pcpu_free_vm_areas - free vmalloc areas for percpu allocator + * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() + * @nr_vms: the number of allocated areas + * + * Free vm_structs and the array allocated by pcpu_get_vm_areas(). + */ +void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) +{ + int i; + + for (i = 0; i < nr_vms; i++) + free_vm_area(vms[i]); + kfree(vms); +} #ifdef CONFIG_PROC_FS static void *s_start(struct seq_file *m, loff_t *pos) |