Age | Commit message (Collapse) | Author |
|
The basic issue is to be able to do what hugetlbfs does but with
different page sizes for some other special filesystems; more
specifically, my need is:
- Huge pages
- SPE local store mappings using 64K pages on a 4K base page size
kernel on Cell
- Some special 4K segments in 64K-page kernels for mapping a dodgy
type of powerpc-specific infiniband hardware that requires 4K MMU
mappings for various reasons I won't explain here.
The main issues are:
- To maintain/keep track of the page size per "segment" (as we can
only have one page size per segment on powerpc, which are 256MB
divisions of the address space).
- To make sure special mappings stay within their allotted
"segments" (including MAP_FIXED crap)
- To make sure everybody else doesn't mmap/brk/grow_stack into a
"segment" that is used for a special mapping
Some of the necessary mechanisms to handle that were present in the
hugetlbfs code, but mostly in ways not suitable for anything else.
The patch relies on some changes to the generic get_unmapped_area()
that just got merged. It still hijacks hugetlb callbacks here or
there as the generic code hasn't been entirely cleaned up yet but
that shouldn't be a problem.
So what is a slice ? Well, I re-used the mechanism used formerly by our
hugetlbfs implementation which divides the address space in
"meta-segments" which I called "slices". The division is done using
256MB slices below 4G, and 1T slices above. Thus the address space is
divided currently into 16 "low" slices and 16 "high" slices. (Special
case: high slice 0 is the area between 4G and 1T).
Doing so simplifies significantly the tracking of segments and avoids
having to keep track of all the 256MB segments in the address space.
While I used the "concepts" of hugetlbfs, I mostly re-implemented
everything in a more generic way and "ported" hugetlbfs to it.
Slices can have an associated page size, which is encoded in the mmu
context and used by the SLB miss handler to set the segment sizes. The
hash code currently doesn't care, it has a specific check for hugepages,
though I might add a mechanism to provide per-slice hash mapping
functions in the future.
The slice code provide a pair of "generic" get_unmapped_area() (bottomup
and topdown) functions that should work with any slice size. There is
some trickiness here so I would appreciate people to have a look at the
implementation of these and let me know if I got something wrong.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
A few code paths need to check whether or not they are running
on the PS3's LV1 hypervisor before making hcalls. This introduces
a new firmware feature bit for this, FW_FEATURE_PS3_LV1.
Now when both PS3 and IBM_CELL_BLADE are enabled, but not PSERIES,
FW_FEATURE_PS3_LV1 and FW_FEATURE_LPAR get enabled at compile time,
which is a bug. The same problem can also happen for (PPC_ISERIES &&
!PPC_PSERIES && PPC_SOMETHING_ELSE). In order to solve this, I
introduce a new CONFIG_PPC_NATIVE option that is set when at least
one platform is selected that can run without a hypervisor and then
turns the firmware feature check into a run-time option.
The new cell oprofile support that was recently merged does not
work on hypervisor based platforms like the PS3, therefore make
it depend on PPC_CELL_NATIVE instead of PPC_CELL. This may change
if we get oprofile support for PS3.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
|
|
Some minor fixes that are needed if we are building for a book-e
processor.
Signed-off-by: Kumar K. Gala <kumar.gala@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
On ARCH=ppc64 we were getting htab_hash_mask recalculated
to the correct value for our particular machine by accident.
In the merge tree, that code was commented out, so htab_hash_mask
was being corrupted.
We now set ppc64_pft_size instead which gets htab_has_mask
calculated correctly for us later. We should put an
ibm,pft-size property in the device tree at some point.
Also set -mno-minimal-toc in some makefiles.
Allow iSeries to configure PROC_DEVICETREE.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
|
|
This moves the remaining files in arch/ppc64/mm to arch/powerpc/mm,
and arranges that we use them when compiling with ARCH=ppc64.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This doesn't change any code, just renames things so we consistently
have foo_32.c and foo_64.c where we have separate 32- and 64-bit
versions.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This also creates merged versions of do_init_bootmem, paging_init
and mem_init and moves them to arch/powerpc/mm/mem.c. It gets rid
of the mem_pieces stuff.
I made memory_limit a parameter to lmb_enforce_memory_limit rather
than a global referenced by that function. This will require some
small changes to ppc64 if we want to continue building ARCH=ppc64
using the merged lmb.c.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This creates the directory structure under arch/powerpc and a bunch
of Kconfig files. It does a first-cut merge of arch/powerpc/mm,
arch/powerpc/lib and arch/powerpc/platforms/powermac. This is enough
to build a 32-bit powermac kernel with ARCH=powerpc.
For now we are getting some unmerged files from arch/ppc/kernel and
arch/ppc/syslib, or arch/ppc64/kernel. This makes some minor changes
to files in those directories and files outside arch/powerpc.
The boot directory is still not merged. That's going to be interesting.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|