aboutsummaryrefslogtreecommitdiff
path: root/arch/ppc64/kernel/head.S
AgeCommit message (Collapse)Author
2005-06-25[PATCH] ppc64: kexec support for ppc64R Sharada
This patch implements the kexec support for ppc64 platforms. A couple of notes: 1) We copy the pages in virtual mode, using the full base kernel and a statically allocated stack. At kexec_prepare time we scan the pages and if any overlap our (0, _end[]) range we return -ETXTBSY. On PowerPC 64 systems running in LPAR (logical partitioning) mode, only a small region of memory, referred to as the RMO, can be accessed in real mode. Since Linux runs with only one zone of memory in the memory allocator, and it can be orders of magnitude more memory than the RMO, looping until we allocate pages in the source region is not feasible. Copying in virtual means we don't have to write a hash table generation and call hypervisor to insert translations, instead we rely on the pinned kernel linear mapping. The kernel already has move to linked location built in, so there is no requirement to load it at 0. If we want to load something other than a kernel, then a stub can be written to copy a linear chunk in real mode. 2) The start entry point gets passed parameters from the kernel. Slaves are started at a fixed address after copying code from the entry point. All CPUs get passed their firmware assigned physical id in r3 (most calling conventions use this register for the first argument). This is used to distinguish each CPU from all other CPUs. Since firmware is not around, there is no other way to obtain this information other than to pass it somewhere. A single CPU, referred to here as the master and the one executing the kexec call, branches to start with the address of start in r4. While this can be calculated, we have to load it through a gpr to branch to this point so defining the register this is contained in is free. A stack of unspecified size is available at r1 (also common calling convention). All remaining running CPUs are sent to start at absolute address 0x60 after copying the first 0x100 bytes from start to address 0. This convention was chosen because it matches what the kernel has been doing itself. (only gpr3 is defined). Note: This is not quite the convention of the kexec bootblock v2 in the kernel. A stub has been written to convert between them, and we may adjust the kernel in the future to allow this directly without any stub. 3) Destination pages can be placed anywhere, even where they would not be accessible in real mode. This will allow us to place ram disks above the RMO if we choose. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: R Sharada <sharada@in.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21[PATCH] ppc64: Abolish ioremap_mmDavid Gibson
Currently ppc64 has two mm_structs for the kernel, init_mm and also ioremap_mm. The latter really isn't necessary: this patch abolishes it, instead restricting vmallocs to the lower 1TB of the init_mm's range and placing io mappings in the upper 1TB. This simplifies the code in a number of places and eliminates an unecessary set of pagetables. It also tweaks the unmap/free path a little, allowing us to remove the unmap_im_area() set of page table walkers, replacing them with unmap_vm_area(). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-02[PATCH] ppc64: cleanup iseries runlight supportAnton Blanchard
The iseries has a bar graph on the front panel that shows how busy it is. The operating system sets and clears a bit in the CTRL register to control it. Instead of going to the complexity of using a thread info bit, just set and clear it in the idle loop. Also create two helper functions, ppc64_runlatch_on and ppc64_runlatch_off. Finally don't use the short form of the SPR defines. Signed-off-by: Anton Blanchard <anton@samba.org> Acked-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16[PATCH] ppc64: Detect altivec via firmware on unknown CPUsBenjamin Herrenschmidt
This patch adds detection of the Altivec capability of the CPU via the firmware in addition to the cpu table. This allows newer CPUs that aren't in the table to still have working altivec support in the kernel. It also fixes a problem where if a CPU isn't recognized as having altivec features, and takes an altivec unavailable exception due to userland issuing altivec instructions, the kernel would happily enable it and context switch the registers ... but not all of them (it would basically forget vrsave). With this patch, the kernel will refuse to enable altivec when the feature isn't detected for the CPU (SIGILL). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!