Age | Commit message (Collapse) | Author |
|
This patch adds the localbus node, moves the bcsr node into the
localbus node, and adds the flash node.
Also enable MTD support in the defconfig.
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Signed-off-by: Heiko Schocher <hs@denx.de>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Supported SMC1 (serial console), SCC3 Ethernet (10Mbps hdx).
Signed-off-by: Heiko Schocher <hs@denx.de>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Some 74xx cores by Freescale are using the configuration field instead
of the major revision field for their revision number. This corrects
the wrong behaviour for those ppc cores including my one.
There is a reference document at Freecale. It describes the PVR
register. This is based on that pdf. You can find the document at:
http://www.freescale.com/files/archives/doc/support_info/PPCPVR.pdf
Signed-off-by: Martin Langer <martin-langer@gmx.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
There is a small bug in the handling of 16G hugepages recently added
to the kernel. This doesn't cause a crash or other user-visible
problems, but it does mean that more levels of pagetable are allocated
than makes sense for 16G pages. The hugepage pagetables for the 16G
pages are allocated much lower in the pagetable tree than they should
be, with the intervening levels allocated with full pmd and pud pages
which will only ever have one entry filled in.
This corrects this problem, at the same time cleaning up the handling
of which level 64k versus 16M hugepage pagetables are allocated at.
The new way of formatting the tests should be more robust against
changes in pagetable structure, or any newly added hugepage sizes.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
The radix trees used by interrupt controllers for their irq reverse
mapping (currently only the XICS found on pSeries) have a complex
locking scheme dating back to before the advent of the lockless radix
tree.
This takes advantage of the lockless radix tree and of the fact that
the items of the tree are pointers to a static array (irq_map)
elements which can never go under us to simplify the locking.
Concurrency between readers and writers is handled by the intrinsic
properties of the lockless radix tree. Concurrency between writers is
handled with a global mutex.
Signed-off-by: Sebastien Dugue <sebastien.dugue@bull.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
irq_radix_revmap() currently serves 2 purposes, irq mapping lookup
and insertion which happen in interrupt and process context respectively.
Separate the function into its 2 components, one for lookup only and one
for insertion only.
Fix the only user of the revmap tree (XICS) to use the new functions.
Also, move the insertion into the radix tree of those irqs that were
requested before it was initialized at said tree initialization.
Mutual exclusion between the tree initialization and readers/writers is
handled via a state variable (revmap_trees_allocated) set to 1 when the tree
has been initialized and set to 2 after the already requested irqs have been
inserted in the tree by the init path. This state is checked before any reader
or writer access just like we used to check for tree.gfp_mask != 0 before.
Finally, now that we're not any longer inserting nodes into the radix-tree
in interrupt context, turn the GFP_ATOMIC allocations into GFP_KERNEL ones.
Signed-off-by: Sebastien Dugue <sebastien.dugue@bull.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
It's the size of the hardware PTE; make that clear in the name.
Signed-off-by: Becky Bruce <becky.bruce@freescale.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Those two are required on my fresh gcc 4.3.1.
Signed-off-by: Thiemo Seufer <ths@linutronix.de>
Signed-off-by: Sebastian Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
sys32_pause is a useless copy of the generic sys_pause.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Using LOAD_REG_IMMEDIATE to get the address of kernel symbols
generates 5 instructions where LOAD_REG_ADDR can do it in one,
and will generate R_PPC64_ADDR16_* relocations in the output when
we get to making the kernel as a position-independent executable,
which we'd rather not have to handle. This changes various bits
of assembly code to use LOAD_REG_ADDR when we need to get the
address of a symbol, or to use suitable position-independent code
for cases where we can't access the TOC for various reasons, or
if we're not running at the address we were linked at.
It also cleans up a few minor things; there's no reason to save and
restore SRR0/1 around RTAS calls, __mmu_off can get the return
address from LR more conveniently than the caller can supply it in
R4 (and we already assume elsewhere that EA == RA if the MMU is on
in early boot), and enable_64b_mode was using 5 instructions where
2 would do.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This changes the way that the exception prologs transfer control to
the handlers in 64-bit kernels with the aim of making it possible to
have the prologs separate from the main body of the kernel. Now,
instead of computing the address of the handler by taking the top
32 bits of the paca address (to get the 0xc0000000........ part) and
ORing in something in the bottom 16 bits, we get the base address of
the kernel by doing a load from the paca and add an offset.
This also replaces an mfmsr and an ori to compute the MSR value for
the handler with a load from the paca. That makes it unnecessary to
have a separate version of EXCEPTION_PROLOG_PSERIES that forces 64-bit
mode.
We can no longer use a direct branches in the exception prolog code,
which means that the SLB miss handlers can't branch directly to
.slb_miss_realmode any more. Instead we have to compute the address
and do an indirect branch. This is conditional on CONFIG_RELOCATABLE;
for non-relocatable kernels we use a direct branch as before. (A later
change will allow CONFIG_RELOCATABLE to be set on 64-bit powerpc.)
Since the secondary CPUs on pSeries start execution in the first 0x100
bytes of real memory and then have to get to wherever the kernel is,
we can't use a direct branch to get there. Instead this changes
__secondary_hold_spinloop from a flag to a function pointer. When it
is set to a non-NULL value, the secondary CPUs jump to the function
pointed to by that value.
Finally this eliminates one code difference between 32-bit and 64-bit
by making __secondary_hold be the text address of the secondary CPU
spinloop rather than a function descriptor for it.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This rearranges head_64.S so that we have all the first-level exception
prologs together starting at 0x100, followed by all the second-level
handlers that are invoked from the first-level prologs, followed by
other code. This doesn't make any functional change but will make
following changes for relocatable kernel support easier.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Kdump kernel needs to use only those memory regions that it is allowed
to use (crashkernel, rtas, tce, etc.). Each of these regions have
their own sizes and are currently added under 'linux,usable-memory'
property under each memory@xxx node of the device tree.
The ibm,dynamic-memory property of ibm,dynamic-reconfiguration-memory
node (on POWER6) now stores in it the representation for most of the
logical memory blocks with the size of each memory block being a
constant (lmb_size). If one or more or part of the above mentioned
regions lie under one of the lmb from ibm,dynamic-memory property,
there is a need to identify those regions within the given lmb.
This makes the kernel recognize a new 'linux,drconf-usable-memory'
property added by kexec-tools. Each entry in this property is of the
form of a count followed by that many (base, size) pairs for the above
mentioned regions. The number of cells in the count value is given by
the #size-cells property of the root node.
Signed-off-by: Chandru Siddalingappa <chandru@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
The return code from invocation of the notifier for
pSeries_reconfig_chain during update of the device tree is not
checked. This causes writes to /proc/ppc64/ofdt to update memory
properties (i.e. ibm,dyamic-reconfiguration-memory) to always
return success, instead of the result of the notifier chain.
This happens specifically when we remove/add memory from the
device tree on machines using memory specified in the
ibm,dynamic-reconfiguration-memory property of the device tree.
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This new copy_4K_page() function was originally tuned for the best
performance on the Cell processor, but after testing on more 64bit
powerpc chips it was found that with a small modification it either
matched the performance offered by the current mainline version or
bettered it by a small amount.
It was found that on a Cell-based QS22 blade the amount of system
time measured when compiling a 2.6.26 pseries_defconfig decreased
by 4%. Using the same test, a 4-way 970MP machine saw a decrease of
2% in system time. No noticeable change was seen on Power4, Power5
or Power6.
The 4096 byte page is copied in thirty-two 128 byte strides. An
initial setup loop executes dcbt instructions for the whole source
page and dcbz instructions for the whole destination page. To do
this, the cache line size is retrieved from ppc64_caches.
A new CPU feature bit, CPU_FTR_CP_USE_DCBTZ, (introduced in the
previous patch) is used to make the modification to this new copy
routine - on Power4, 970 and Cell the feature bit is set so the
setup loop is executed, but on all other 64bit chips the setup
loop is nop'ed out.
Signed-off-by: Mark Nelson <markn@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Add a new CPU feature bit, CPU_FTR_CP_USE_DCBTZ, to be added to the
64bit powerpc chips that benefit from having dcbt and dcbz
instructions used in their memory copy routines.
This will be used in a subsequent patch that updates copy_4K_page().
The new bit is added to Cell, PPC970 and Power4 because they show
better performance with the new copy_4K_page() when dcbt and dcbz
instructions are used.
Signed-off-by: Mark Nelson <markn@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Evidently MACIO_FLAG_SCCA_ON was meant.
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: fix memmap=exactmap boot argument
x86: disable static NOPLs on 32 bits
xen: fix 2.6.27-rc5 xen balloon driver warnings
|
|
When using kdump modifying the e820 map is yielding strange results.
For example starting with
BIOS-provided physical RAM map:
BIOS-e820: 0000000000000100 - 0000000000093400 (usable)
BIOS-e820: 0000000000093400 - 00000000000a0000 (reserved)
BIOS-e820: 0000000000100000 - 000000003fee0000 (usable)
BIOS-e820: 000000003fee0000 - 000000003fef3000 (ACPI data)
BIOS-e820: 000000003fef3000 - 000000003ff80000 (ACPI NVS)
BIOS-e820: 000000003ff80000 - 0000000040000000 (reserved)
BIOS-e820: 00000000e0000000 - 00000000f0000000 (reserved)
BIOS-e820: 00000000fec00000 - 00000000fec10000 (reserved)
BIOS-e820: 00000000fee00000 - 00000000fee01000 (reserved)
BIOS-e820: 00000000ff000000 - 0000000100000000 (reserved)
and booting with args
memmap=exactmap memmap=640K@0K memmap=5228K@16384K memmap=125188K@22252K memmap=76K#1047424K memmap=564K#1047500K
resulted in:
user-defined physical RAM map:
user: 0000000000000000 - 0000000000093400 (usable)
user: 0000000000093400 - 00000000000a0000 (reserved)
user: 0000000000100000 - 000000003fee0000 (usable)
user: 000000003fee0000 - 000000003fef3000 (ACPI data)
user: 000000003fef3000 - 000000003ff80000 (ACPI NVS)
user: 000000003ff80000 - 0000000040000000 (reserved)
user: 00000000e0000000 - 00000000f0000000 (reserved)
user: 00000000fec00000 - 00000000fec10000 (reserved)
user: 00000000fee00000 - 00000000fee01000 (reserved)
user: 00000000ff000000 - 0000000100000000 (reserved)
But should have resulted in:
user-defined physical RAM map:
user: 0000000000000000 - 00000000000a0000 (usable)
user: 0000000001000000 - 000000000151b000 (usable)
user: 00000000015bb000 - 0000000008ffc000 (usable)
user: 000000003fee0000 - 000000003ff80000 (ACPI data)
This is happening because of an improper usage of strcmp() in the
e820 parsing code. The strcmp() always returns !0 and never resets the
value for e820.nr_map and returns an incorrect user-defined map.
This patch fixes the problem.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
* 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6:
[S390] cio: allow offline processing for disconnected devices
[S390] cio: handle ssch() return codes correctly.
[S390] cio: Correct cleanup on error.
[S390] CVE-2008-1514: prevent ptrace padding area read/write in 31-bit mode
|
|
* 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus:
[MIPS] IP22: Fix detection of second HPC3 on Challenge S
|
|
It was introduced by "vsprintf: add support for '%pS' and '%pF' pointer
formats" in commit 0fe1ef24f7bd0020f29ffe287dfdb9ead33ca0b2. However,
the current way its coded doesn't work on parisc64. For two reasons: 1)
parisc isn't in the #ifdef and 2) parisc has a different format for
function descriptors
Make dereference_function_descriptor() more accommodating by allowing
architecture overrides. I put the three overrides (for parisc64, ppc64
and ia64) in arch/kernel/module.c because that's where the kernel
internal linker which knows how to deal with function descriptors sits.
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When running a 31-bit ptrace, on either an s390 or s390x kernel,
reads and writes into a padding area in struct user_regs_struct32
will result in a kernel panic.
This is also known as CVE-2008-1514.
Test case available here:
http://sources.redhat.com/cgi-bin/cvsweb.cgi/~checkout~/tests/ptrace-tests/tests/user-area-padding.c?cvsroot=systemtap
Steps to reproduce:
1) wget the above
2) gcc -o user-area-padding-31bit user-area-padding.c -Wall -ggdb2 -D_GNU_SOURCE -m31
3) ./user-area-padding-31bit
<panic>
Test status
-----------
Without patch, both s390 and s390x kernels panic. With patch, the test case,
as well as the gdb testsuite, pass without incident, padding area reads
returning zero, writes ignored.
Nb: original version returned -EINVAL on write attempts, which broke the
gdb test and made the test case slightly unhappy, Jan Kratochvil suggested
the change to return 0 on write attempts.
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Tested-by: Jan Kratochvil <jan.kratochvil@redhat.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/hskinnemoen/avr32-2.6
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/hskinnemoen/avr32-2.6:
avr32: pm_standby low-power ram bug fix
avr32: Fix lockup after Java stack underflow in user mode
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc:
powerpc: Fix rare boot build breakage
powerpc/spufs: Fix possible scheduling of a context to multiple SPEs
powerpc/spufs: Fix race for a free SPU
powerpc/spufs: Fix multiple get_spu_context()
|
|
* master.kernel.org:/home/rmk/linux-2.6-arm:
[ARM] 5241/1: provide ioremap_wc()
[ARM] omap: fix virtual vs physical address space confusions
[ARM] remove unused #include <version.h>
[ARM] omap: fix build error in ohci-omap.c
[ARM] omap: fix gpio.c build error
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6:
sparc64: Prevent sparc64 from invoking irq handlers on offline CPUs
sparc64: Fix IPI call locking.
|
|
On 32-bit, at least the generic nops are fairly reasonable, but the
default nops for 64-bit really look pretty sad, and the P6 nops really do
look better.
So I would suggest perhaps moving the static P6 nop selection into the
CONFIG_X86_64 thing.
The alternative is to just get rid of that static nop selection, and just
have two cases: 32-bit and 64-bit, and just pick obviously safe cases for
them.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
The second HPC3 could be found only on Guiness systems (Challenge-S),
but not on fullhouse (Indigo2) systems.
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
A make -j20 powerpc kernel build broke a couple of months ago saying:
In file included from arch/powerpc/boot/gunzip_util.h:13,
from arch/powerpc/boot/prpmc2800.c:21:
arch/powerpc/boot/zlib.h:85: error: expected ‘:’, ‘,’, ‘;’, ‘}’ or ‘__attribute__’ before ‘*’ token
arch/powerpc/boot/zlib.h:630: warning: type defaults to ‘int’ in declaration of ‘Byte’
arch/powerpc/boot/zlib.h:630: error: expected ‘;’, ‘,’ or ‘)’ before ‘*’ token
It happened again yesterday: too rare for me to confirm the fix, but
it looks like the list of dependants on gunzip_util.h was incomplete.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
We currently have a race when scheduling a context to a SPE -
after we have found a runnable context in spusched_tick, the same
context may have been scheduled by spu_activate().
This may result in a panic if we try to unschedule a context that has
been freed in the meantime.
This change exits spu_schedule() if the context has already been
scheduled, so we don't end up scheduling it twice.
Signed-off-by: Andre Detsch <adetsch@br.ibm.com>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: cpu_init(): fix memory leak when using CPU hotplug
x86: pda_init(): fix memory leak when using CPU hotplug
x86, xen: Use native_pte_flags instead of native_pte_val for .pte_flags
x86: move mtrr cpu cap setting early in early_init_xxxx
x86: delay early cpu initialization until cpuid is done
x86: use X86_FEATURE_NOPL in alternatives
x86: add NOPL as a synthetic CPU feature bit
x86: boot: stub out unimplemented CPU feature words
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource, acpi_pm.c: check for monotonicity
clocksource, acpi_pm.c: use proper read function also in errata mode
ntp: fix calculation of the next jiffie to trigger RTC sync
x86: HPET: read back compare register before reading counter
x86: HPET fix moronic 32/64bit thinko
clockevents: broadcast fixup possible waiters
HPET: make minimum reprogramming delta useful
clockevents: prevent endless loop lockup
clockevents: prevent multiple init/shutdown
clockevents: enforce reprogram in oneshot setup
clockevents: prevent endless loop in periodic broadcast handler
clockevents: prevent clockevent event_handler ending up handler_noop
|
|
* 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus:
[MIPS] Probe initrd header only if explicitly specified
[MIPS] TX39xx: Add missing local_flush_icache_range initialization
[MIPS] TXx9: Fix txx9_pcode initialization
[MIPS] Fix WARNING: at kernel/smp.c:290
[MIPS] Fix data bus error recovery
|
|
Exception stacks are allocated each time a CPU is set online.
But the allocated space is never freed. Thus with one CPU hotplug
offline/online cycle there is a memory leak of 24K (6 pages) for
a CPU.
Fix is to allocate exception stacks only once -- when the CPU is
set online for the first time.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: akpm@linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
pda->irqstackptr is allocated whenever a CPU is set online.
But it is never freed. This results in a memory leak of 16K
for each CPU offline/online cycle.
Fix is to allocate pda->irqstackptr only once.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: akpm@linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Using native_pte_val triggers the BUG_ON() in the paravirt_ops
version of pte_flags().
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Krzysztof Helt found MTRR is not detected on k6-2
root cause:
we moved mtrr_bp_init() early for mtrr trimming,
and in early_detect we only read the CPU capability from cpuid,
so some cpu doesn't have that bit in cpuid.
So we need to add early_init_xxxx to preset those bit before mtrr_bp_init
for those earlier cpus.
this patch is for v2.6.27
Reported-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Move early cpu initialization after cpu early get cap so the
early cpu initialization can fix up cpu caps.
Signed-off-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This patch provides an ARM implementation of ioremap_wc().
We use different page table attributes depending on which CPU we
are running on:
- Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four
possible mapping types (CB=00/01/10/11). We can't use any of the
cached memory types (CB=10/11), since that breaks coherency with
peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and
CB=01 (Uncached/Buffered) allows the hardware more freedom than
CB=00, so we'll use that.
(The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores
but isn't allowed to merge them, but there is no other mapping type
we can use that allows the hardware to delay and merge stores, so
we'll go with CB=01.)
- XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight
difference that on these platforms, CB=01 actually _does_ allow
merging stores. (If you want noncoalescing bufferable behavior
on Xscale v1/v2, you need to use XCB=101.)
- Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100
mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal
in ARMv6 parlance).
The ARMv6 ARM explicitly says that any accesses to Normal memory can
be merged, which makes Normal memory more suitable for _wc mappings
than Device or Strongly Ordered memory, as the latter two mapping
types are guaranteed to maintain transaction number, size and order.
We use the Uncached variety of Normal mappings for the same reason
that we can't use C=1 mappings on ARMv5.
The xsc3 Architecture Specification documents TEXCB=00100 as being
Uncacheable and allowing coalescing of writes, which is also just
what we need.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
After fixing the u32 thinko I sill had occasional hickups on ATI chipsets
with small deltas. There seems to be a delay between writing the compare
register and the transffer to the internal register which triggers the
interrupt. Reading back the value makes sure, that it hit the internal
match register befor we compare against the counter value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
We use the HPET only in 32bit mode because:
1) some HPETs are 32bit only
2) on i386 there is no way to read/write the HPET atomic 64bit wide
The HPET code unification done by the "moron of the year" did
not take into account that unsigned long is different on 32 and
64 bit.
This thinko results in a possible endless loop in the clockevents
code, when the return comparison fails due to the 64bit/332bit
unawareness.
unsigned long cnt = (u32) hpet_read() + delta can wrap over 32bit.
but the final compare will fail and return -ETIME causing endless
loops.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Use X86_FEATURE_NOPL to determine if it is safe to use P6 NOPs in
alternatives. Also, replace table and loop with simple if statement.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
The long noops ("NOPL") are supposed to be detected by family >= 6.
Unfortunately, several non-Intel x86 implementations, both hardware
and software, don't obey this dictum. Instead, probe for NOPL
directly by executing a NOPL instruction and see if we get #UD.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
The CPU feature detection code in the boot code is somewhat minimal,
and doesn't include all possible CPUID words. In particular, it
doesn't contain the code for CPU feature words 2 (Transmeta),
3 (Linux-specific), 5 (VIA), or 7 (scattered). Zero them out, so we
can still set those bits as known at compile time; in particular, this
allows creating a Linux-specific NOPL flag and have it required (and
therefore resolvable at compile time) in 64-bit mode.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: add io delay quirk for Presario F700
|
|
* git://git.infradead.org/~dwmw2/dwmw2-2.6.27:
Revert "[ARM] use the new byteorder headers"
Fix conditional export of kvh.h and a.out.h to userspace.
[MTD] [NAND] tmio_nand: fix base address programming
|