aboutsummaryrefslogtreecommitdiff
path: root/crypto/Kconfig
AgeCommit message (Collapse)Author
2007-02-05[S390] move crypto options and some cleanup.Jan Glauber
This patch moves the config options for the s390 crypto instructions to the standard "Hardware crypto devices" menu. In addition some cleanup has been done: use a flag for supported keylengths, add a warning about machien limitation, return ENOTSUPP in case the hardware has no support, remove superfluous printks and update email addresses. Signed-off-by: Jan Glauber <jan.glauber@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2006-12-06[CRYPTO] lrw: Liskov Rivest Wagner, a tweakable narrow block cipher modeRik Snel
Main module, this implements the Liskov Rivest Wagner block cipher mode in the new blockcipher API. The implementation is based on ecb.c. The LRW-32-AES specification I used can be found at: http://grouper.ieee.org/groups/1619/email/pdf00017.pdf It implements the optimization specified as optional in the specification, and in addition it uses optimized multiplication routines from gf128mul.c. Since gf128mul.[ch] is not tested on bigendian, this cipher mode may currently fail badly on bigendian machines. Signed-off-by: Rik Snel <rsnel@cube.dyndns.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-12-06[CRYPTO] lib: table driven multiplications in GF(2^128)Rik Snel
A lot of cypher modes need multiplications in GF(2^128). LRW, ABL, GCM... I use functions from this library in my LRW implementation and I will also use them in my ABL (Arbitrary Block Length, an unencumbered (correct me if I am wrong, wide block cipher mode). Elements of GF(2^128) must be presented as u128 *, it encourages automatic and proper alignment. The library contains support for two different representations of GF(2^128), see the comment in gf128mul.h. There different levels of optimization (memory/speed tradeoff). The code is based on work by Dr Brian Gladman. Notable changes: - deletion of two optimization modes - change from u32 to u64 for faster handling on 64bit machines - support for 'bbe' representation in addition to the, already implemented, 'lle' representation. - move 'inline void' functions from header to 'static void' in the source file - update to use the linux coding style conventions The original can be found at: http://fp.gladman.plus.com/AES/modes.vc8.19-06-06.zip The copyright (and GPL statement) of the original author is preserved. Signed-off-by: Rik Snel <rsnel@cube.dyndns.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-12-06[CRYPTO] xcbc: New algorithmKazunori MIYAZAWA
This is core code of XCBC. XCBC is an algorithm that forms a MAC algorithm out of a cipher algorithm. For example, AES-XCBC-MAC is a MAC algorithm based on the AES cipher algorithm. Signed-off-by: Kazunori MIYAZAWA <miyazawa@linux-ipv6.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-10-16[CRYPTO] api: Select cryptomgr where neededHerbert Xu
Since cryptomgr is the only way to construct algorithm instances for now it makes sense to let the templates depend on it as otherwise it may be left off inadvertently. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] digest: Remove old HMAC implementationHerbert Xu
This patch removes the old HMAC implementation now that nobody uses it anymore. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-09-21[CRYPTO] hmac: Add crypto template implementationHerbert Xu
This patch rewrites HMAC as a crypto template. This means that HMAC is no longer a hard-coded part of the API. It's now a template that generates standard digest algorithms like any other. The old HMAC is preserved until all current users are converted. The same structure can be used by other MACs such as AES-XCBC-MAC. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-09-21[CRYPTO] digest: Added user API for new hash typeHerbert Xu
The existing digest user interface is inadequate for support asynchronous operations. For one it doesn't return a value to indicate success or failure, nor does it take a per-operation descriptor which is essential for the issuing of requests while other requests are still outstanding. This patch is the first in a series of steps to remodel the interface for asynchronous operations. For the ease of transition the new interface will be known as "hash" while the old one will remain as "digest". This patch also changes sg_next to allow chaining. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] s390: Added block cipher versions of CBC/ECBHerbert Xu
This patch adds block cipher algorithms for S390. Once all users of the old cipher type have been converted the existing CBC/ECB non-block cipher operations will be removed. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] cipher: Added block ciphers for CBC/ECBHerbert Xu
This patch adds two block cipher algorithms, CBC and ECB. These are implemented as templates on top of existing single-block cipher algorithms. They invoke the single-block cipher through the new encrypt_one/decrypt_one interface. This also optimises the in-place encryption and decryption to remove the cost of an IV copy each round. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] cipher: Added block cipher typeHerbert Xu
This patch adds the new type of block ciphers. Unlike current cipher algorithms which operate on a single block at a time, block ciphers operate on an arbitrarily long linear area of data. As it is block-based, it will skip any data remaining at the end which cannot form a block. The block cipher has one major difference when compared to the existing block cipher implementation. The sg walking is now performed by the algorithm rather than the cipher mid-layer. This is needed for drivers that directly support sg lists. It also improves performance for all algorithms as it reduces the total number of indirect calls by one. In future the existing cipher algorithm will be converted to only have a single-block interface. This will be done after all existing users have switched over to the new block cipher type. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] api: Add cryptomgrHerbert Xu
The cryptomgr module is a simple manager of crypto algorithm instances. It ensures that parameterised algorithms of the type tmpl(alg) (e.g., cbc(aes)) are always created. This is meant to satisfy the needs for most users. For more complex cases such as deeper combinations or multiple parameters, a netlink module will be created which allows arbitrary expressions to be parsed in user-space. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-09-21[CRYPTO] api: Split out low-level APIHerbert Xu
The crypto API is made up of the part facing users such as IPsec and the low-level part which is used by cryptographic entities such as algorithms. This patch splits out the latter so that the two APIs are more clearly delineated. As a bonus the low-level API can now be modularised if all algorithms are built as modules. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] twofish: x86-64 assembly versionJoachim Fritschi
The patch passed the trycpt tests and automated filesystem tests. This rewrite resulted in some nice perfomance increase over my last patch. Short summary of the tcrypt benchmarks: Twofish Assembler vs. Twofish C (256bit 8kb block CBC) encrypt: -27% Cycles decrypt: -23% Cycles Twofish Assembler vs. AES Assembler (128bit 8kb block CBC) encrypt: +18% Cycles decrypt: +15% Cycles Twofish Assembler vs. AES Assembler (256bit 8kb block CBC) encrypt: -9% Cycles decrypt: -8% Cycles Full Output: http://homepages.tu-darmstadt.de/~fritschi/twofish/tcrypt-speed-twofish-c-x86_64.txt http://homepages.tu-darmstadt.de/~fritschi/twofish/tcrypt-speed-twofish-asm-x86_64.txt http://homepages.tu-darmstadt.de/~fritschi/twofish/tcrypt-speed-aes-asm-x86_64.txt Here is another bonnie++ benchmark with encrypted filesystems. Most runs maxed out the hd. It should give some idea what the module can do for encrypted filesystem performance even though you can't see the full numbers. http://homepages.tu-darmstadt.de/~fritschi/twofish/output_20060610_130806_x86_64.html Signed-off-by: Joachim Fritschi <jfritschi@freenet.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] twofish: i586 assembly versionJoachim Fritschi
The patch passed the trycpt tests and automated filesystem tests. This rewrite resulted in some nice perfomance increase over my last patch. Short summary of the tcrypt benchmarks: Twofish Assembler vs. Twofish C (256bit 8kb block CBC) encrypt: -33% Cycles decrypt: -45% Cycles Twofish Assembler vs. AES Assembler (128bit 8kb block CBC) encrypt: +3% Cycles decrypt: -22% Cycles Twofish Assembler vs. AES Assembler (256bit 8kb block CBC) encrypt: -20% Cycles decrypt: -36% Cycles Full Output: http://homepages.tu-darmstadt.de/~fritschi/twofish/tcrypt-speed-twofish-asm-i586.txt http://homepages.tu-darmstadt.de/~fritschi/twofish/tcrypt-speed-twofish-c-i586.txt http://homepages.tu-darmstadt.de/~fritschi/twofish/tcrypt-speed-aes-asm-i586.txt Here is another bonnie++ benchmark with encrypted filesystems. All runs with the twofish assembler modules max out the drivespeed. It should give some idea what the module can do for encrypted filesystem performance even though you can't see the full numbers. http://homepages.tu-darmstadt.de/~fritschi/twofish/output_20060611_205432_x86.html Signed-off-by: Joachim Fritschi <jfritschi@freenet.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-09-21[CRYPTO] twofish: Split out common c codeJoachim Fritschi
This patch splits up the twofish crypto routine into a common part ( key setup ) which will be uses by all twofish crypto modules ( generic-c , i586 assembler and x86_64 assembler ) and generic-c part. It also creates a new header file which will be used by all 3 modules. This eliminates all code duplication. Correctness was verified with the tcrypt module and automated test scripts. Signed-off-by: Joachim Fritschi <jfritschi@freenet.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-06-26[CRYPTO] tcrypt: Forbid tcrypt from being built-inHerbert Xu
It makes no sense to build tcrypt into the kernel. In fact, now that the driver init function's return status is being checked, it is in fact harmful to do so. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-01-09[CRYPTO] Allow AES C/ASM implementations to coexistHerbert Xu
As the Crypto API now allows multiple implementations to be registered for the same algorithm, we no longer have to play tricks with Kconfig to select the right AES implementation. This patch sets the driver name and priority for all the AES implementations and removes the Kconfig conditions on the C implementation for AES. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2006-01-06[PATCH] s390: cleanup KconfigMartin Schwidefsky
Sanitize some s390 Kconfig options. We have ARCH_S390, ARCH_S390X, ARCH_S390_31, 64BIT, S390_SUPPORT and COMPAT. Replace these 6 options by S390, 64BIT and COMPAT. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06[PATCH] s390: aes supportJan Glauber
Add support for the hardware accelerated AES crypto algorithm. Signed-off-by: Jan Glauber <jan.glauber@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06[PATCH] s390: sha256 supportJan Glauber
Add support for the hardware accelerated sha256 crypto algorithm. Signed-off-by: Jan Glauber <jan.glauber@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06[PATCH] s390: in-kernel crypto renameJan Glauber
Replace all references to z990 by s390 in the in-kernel crypto files in arch/s390/crypto. The code is not specific to a particular machine (z990) but to the s390 platform. Big diff, does nothing.. Signed-off-by: Jan Glauber <jan.glauber@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-01[CRYPTO]: Fix XTEA implementationAaron Grothe
The XTEA implementation was incorrect due to a misinterpretation of operator precedence. Because of the wide-spread nature of this error, the erroneous implementation will be kept, albeit under the new name of XETA. Signed-off-by: Aaron Grothe <ajgrothe@yahoo.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-07-06[CRYPTO] Add x86_64 asm AESAndreas Steinmetz
Implementation: =============== The encrypt/decrypt code is based on an x86 implementation I did a while ago which I never published. This unpublished implementation does include an assembler based key schedule and precomputed tables. For simplicity and best acceptance, however, I took Gladman's in-kernel code for table generation and key schedule for the kernel port of my assembler code and modified this code to produce the key schedule as required by my assembler implementation. File locations and Kconfig are kept similar to the i586 AES assembler implementation. It may seem a little bit strange to use 32 bit I/O and registers in the assembler implementation but this gives the best code size. My implementation takes one instruction more per round compared to Gladman's x86 assembler but it doesn't require any stack for local variables or saved registers and it is less serialized than Gladman's code. Note that all comparisons to Gladman's code were done after my code was implemented. I did only use FIPS PUB 197 for the implementation so my implementation is independent work. If anybody has a better assembler solution for x86_64 I'll be pleased to have my code replaced with the better solution. Testing: ======== The implementation passes the in-kernel crypto testing module and I'm running it without any problems on my laptop where it is mainly used for dm-crypt. Microbenchmark: =============== The microbenchmark was done in userspace with similar compile flags as used during kernel compile. Encrypt/decrypt is about 35% faster than the generic C implementation. As the generic C as well as my assembler implementation are both table I don't really expect that there is much room for further improvements though I'll be glad to be corrected here. The key schedule is about 5% slower than the generic C implementation. This is due to the fact that some more work has to be done in the key schedule routine to fit the schedule to the assembler implementation. Code Size: ========== Encrypt and decrypt are together about 2.1 Kbytes smaller than the generic C implementation which is important with regard to L1 cache usage. The key schedule routine is about 100 bytes larger than the generic C implementation. Data Size: ========== There's no difference in data size requirements between the assembler implementation and the generic C implementation. License: ======== Gladmans's code is dual BSD/GPL whereas my assembler code is GPLv2 only (I'm not going to change the license for my code). So I had to change the module license for the x86_64 aes module from 'Dual BSD/GPL' to 'GPL' to reflect the most restrictive license within the module. Signed-off-by: Andreas Steinmetz <ast@domdv.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-05-01[PATCH] uml: support AES i586 crypto driverPaolo 'Blaisorblade' Giarrusso
We want to make possible, for the user, to enable the i586 AES implementation. This requires a restructure. - Add a CONFIG_UML_X86 to notify that we are building a UML for i386. - Rename CONFIG_64_BIT to CONFIG_64BIT as is used for all other archs - Tell crypto/Kconfig that UML_X86 is as good as X86 - Tell it that it must exclude not X86_64 but 64BIT, which will give the same results. - Tell kbuild to descend down into arch/i386/crypto/ to build what's needed. Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!