Age | Commit message (Collapse) | Author |
|
The message schedule W (u64[80]) is too big for the stack. In order
for this algorithm to be used with shash it is moved to a static
percpu area.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes michael_mic to the new shash interface.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes wp512, wp384 and wp256 to the new shash interface.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes tgr192, tgr160 and tgr128 to the new shash interface.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes sha256 and sha224 to the new shash interface.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes md5 to the new shash interface.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes md4 to the new shash interface.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes sha1 to the new shash interface.
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes rmd320 to the new shash interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes rmd256 to the new shash interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes rmd160 to the new shash interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes rmd128 to the new shash interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes digest_null to the new shash interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Since most cryptographic hash algorithms have no keys, this patch
makes the setkey function optional for ahash and shash.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When self-testing (de)compression algorithms, make sure the actual size of
the (de)compressed output data matches the expected output size.
Otherwise, in case the actual output size would be smaller than the expected
output size, the subsequent buffer compare test would still succeed, and no
error would be reported.
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Base versions handle constant folding just fine.
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This warning:
crypto/testmgr.c: In function ‘test_comp’:
crypto/testmgr.c:829: warning: ‘ret’ may be used uninitialized in this function
triggers because GCC correctly notices that in the ctcount == 0 &&
dtcount != 0 input condition case this function can return an undefined
value, if the second loop fails.
Remove the shadowed 'ret' variable from the second loop that was probably
unintended.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The ANSI X9.31 PRNG docs aren't particularly clear on how to increment DT,
but empirical testing shows we're incrementing from the wrong end. A 10,000
iteration Monte Carlo RNG test currently winds up not getting the expected
result.
From http://csrc.nist.gov/groups/STM/cavp/documents/rng/RNGVS.pdf :
# CAVS 4.3
# ANSI931 MCT
[X9.31]
[AES 128-Key]
COUNT = 0
Key = 9f5b51200bf334b5d82be8c37255c848
DT = 6376bbe52902ba3b67c925fa701f11ac
V = 572c8e76872647977e74fbddc49501d1
R = 48e9bd0d06ee18fbe45790d5c3fc9b73
Currently, we get 0dd08496c4f7178bfa70a2161a79459a after 10000 loops.
Inverting the DT increment routine results in us obtaining the expected result
of 48e9bd0d06ee18fbe45790d5c3fc9b73. Verified on both x86_64 and ppc64.
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
While working with some FIPS RNGVS test vectors yesterday, I discovered a
little bug in the way the ansi_cprng code works right now.
For example, the following test vector (complete with expected result)
from http://csrc.nist.gov/groups/STM/cavp/documents/rng/RNGVS.pdf ...
Key = f3b1666d13607242ed061cabb8d46202
DT = e6b3be782a23fa62d71d4afbb0e922fc
V = f0000000000000000000000000000000
R = 88dda456302423e5f69da57e7b95c73a
...when run through ansi_cprng, yields an incorrect R value
of e2afe0d794120103d6e86a2b503bdfaa.
If I load up ansi_cprng w/dbg=1 though, it was fairly obvious what was
going wrong:
----8<----
getting 16 random bytes for context ffff810033fb2b10
Calling _get_more_prng_bytes for context ffff810033fb2b10
Input DT: 00000000: e6 b3 be 78 2a 23 fa 62 d7 1d 4a fb b0 e9 22 fc
Input I: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Input V: 00000000: f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
tmp stage 0: 00000000: e6 b3 be 78 2a 23 fa 62 d7 1d 4a fb b0 e9 22 fc
tmp stage 1: 00000000: f4 8e cb 25 94 3e 8c 31 d6 14 cd 8a 23 f1 3f 84
tmp stage 2: 00000000: 8c 53 6f 73 a4 1a af d4 20 89 68 f4 58 64 f8 be
Returning new block for context ffff810033fb2b10
Output DT: 00000000: e7 b3 be 78 2a 23 fa 62 d7 1d 4a fb b0 e9 22 fc
Output I: 00000000: 04 8e cb 25 94 3e 8c 31 d6 14 cd 8a 23 f1 3f 84
Output V: 00000000: 48 89 3b 71 bc e4 00 b6 5e 21 ba 37 8a 0a d5 70
New Random Data: 00000000: 88 dd a4 56 30 24 23 e5 f6 9d a5 7e 7b 95 c7 3a
Calling _get_more_prng_bytes for context ffff810033fb2b10
Input DT: 00000000: e7 b3 be 78 2a 23 fa 62 d7 1d 4a fb b0 e9 22 fc
Input I: 00000000: 04 8e cb 25 94 3e 8c 31 d6 14 cd 8a 23 f1 3f 84
Input V: 00000000: 48 89 3b 71 bc e4 00 b6 5e 21 ba 37 8a 0a d5 70
tmp stage 0: 00000000: e7 b3 be 78 2a 23 fa 62 d7 1d 4a fb b0 e9 22 fc
tmp stage 1: 00000000: 80 6b 3a 8c 23 ae 8f 53 be 71 4c 16 fc 13 b2 ea
tmp stage 2: 00000000: 2a 4d e1 2a 0b 58 8e e6 36 b8 9c 0a 26 22 b8 30
Returning new block for context ffff810033fb2b10
Output DT: 00000000: e8 b3 be 78 2a 23 fa 62 d7 1d 4a fb b0 e9 22 fc
Output I: 00000000: c8 e2 01 fd 9f 4a 8f e5 e0 50 f6 21 76 19 67 9a
Output V: 00000000: ba 98 e3 75 c0 1b 81 8d 03 d6 f8 e2 0c c6 54 4b
New Random Data: 00000000: e2 af e0 d7 94 12 01 03 d6 e8 6a 2b 50 3b df aa
returning 16 from get_prng_bytes in context ffff810033fb2b10
----8<----
The expected result is there, in the first "New Random Data", but we're
incorrectly making a second call to _get_more_prng_bytes, due to some checks
that are slightly off, which resulted in our original bytes never being
returned anywhere.
One approach to fixing this would be to alter some byte_count checks in
get_prng_bytes, but it would mean the last DEFAULT_BLK_SZ bytes would be
copied a byte at a time, rather than in a single memcpy, so a slightly more
involved, equally functional, and ultimately more efficient way of fixing this
was suggested to me by Neil, which I'm submitting here. All of the RNGVS ANSI
X9.31 AES128 VST test vectors I've passed through ansi_cprng are now returning
the expected results with this change.
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
ARRAY_SIZE is more concise to use when the size of an array is divided by
the size of its type or the size of its first element.
The semantic patch that makes this change is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@i@
@@
#include <linux/kernel.h>
@depends on i using "paren.iso"@
type T;
T[] E;
@@
- (sizeof(E)/sizeof(T))
+ ARRAY_SIZE(E)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch swaps the role of libcrc32c and crc32c. Previously
the implementation was in libcrc32c and crc32c was a wrapper.
Now the code is in crc32c and libcrc32c just calls the crypto
layer.
The reason for the change is to tap into the algorithm selection
capability of the crypto API so that optimised implementations
such as the one utilising Intel's CRC32C instruction can be
used where available.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch adds a test for the requirement that all crc32c algorithms
shall store the partial result in the first four bytes of the descriptor
context.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes crc32c to the new shash interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch allows shash algorithms to be used through the old hash
interface. This is a transitional measure so we can convert the
underlying algorithms to shash before converting the users across.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch makes /proc/crypto call the type-specific show function
if one is present before calling the legacy show functions for
cipher/digest/compress. This allows us to reuse the type values
for those legacy types. In particular, hash and digest will share
one type value while shash is phased in as the default hash type.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
It is often useful to save the partial state of a hash function
so that it can be used as a base for two or more computations.
The most prominent example is HMAC where all hashes start from
a base determined by the key. Having an import/export interface
means that we only have to compute that base once rather than
for each message.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch allows shash algorithms to be used through the ahash
interface. This is required before we can convert digest algorithms
over to shash.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The shash interface replaces the current synchronous hash interface.
It improves over hash in two ways. Firstly shash is reentrant,
meaning that the same tfm may be used by two threads simultaneously
as all hashing state is stored in a local descriptor.
The other enhancement is that shash no longer takes scatter list
entries. This is because shash is specifically designed for
synchronous algorithms and as such scatter lists are unnecessary.
All existing hash users will be converted to shash once the
algorithms have been completely converted.
There is also a new finup function that combines update with final.
This will be extended to ahash once the algorithm conversion is
done.
This is also the first time that an algorithm type has their own
registration function. Existing algorithm types will be converted
to this way in due course.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch reintroduces a completely revamped crypto_alloc_tfm.
The biggest change is that we now take two crypto_type objects
when allocating a tfm, a frontend and a backend. In fact this
simply formalises what we've been doing behind the API's back.
For example, as it stands crypto_alloc_ahash may use an
actual ahash algorithm or a crypto_hash algorithm. Putting
this in the API allows us to do this much more cleanly.
The existing types will be converted across gradually.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The type exit function needs to undo any allocations done by the type
init function. However, the type init function may differ depending
on the upper-level type of the transform (e.g., a crypto_blkcipher
instantiated as a crypto_ablkcipher).
So we need to move the exit function out of the lower-level
structure and into crypto_tfm itself.
As it stands this is a no-op since nobody uses exit functions at
all. However, all cases where a lower-level type is instantiated
as a different upper-level type (such as blkcipher as ablkcipher)
will be converted such that they allocate the underlying transform
and use that instead of casting (e.g., crypto_ablkcipher casted
into crypto_blkcipher). That will need to use a different exit
function depending on the upper-level type.
This patch also allows the type init/exit functions to call (or not)
cra_init/cra_exit instead of always calling them from the top level.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This is a patch that was sent to me by Jarod Wilson, marking off my
outstanding todo to allow the ansi cprng to set/reset the DT counter value in a
cprng instance. Currently crytpo_rng_reset accepts a seed byte array which is
interpreted by the ansi_cprng as a {V key} tuple. This patch extends that tuple
to now be {V key DT}, with DT an optional value during reset. This patch also
fixes a bug we noticed in which the offset of the key area of the seed is
started at DEFAULT_PRNG_KSZ rather than DEFAULT_BLK_SZ as it should be.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove the private implementation of 32-bit rotation and unaligned
access with byteswapping.
As a bonus, fixes sparse warnings:
crypto/camellia.c:602:2: warning: cast to restricted __be32
crypto/camellia.c:603:2: warning: cast to restricted __be32
crypto/camellia.c:604:2: warning: cast to restricted __be32
crypto/camellia.c:605:2: warning: cast to restricted __be32
crypto/camellia.c:710:2: warning: cast to restricted __be32
crypto/camellia.c:711:2: warning: cast to restricted __be32
crypto/camellia.c:712:2: warning: cast to restricted __be32
crypto/camellia.c:713:2: warning: cast to restricted __be32
crypto/camellia.c:714:2: warning: cast to restricted __be32
crypto/camellia.c:715:2: warning: cast to restricted __be32
crypto/camellia.c:716:2: warning: cast to restricted __be32
crypto/camellia.c:717:2: warning: cast to restricted __be32
[Thanks to Tomoyuki Okazaki for spotting the typo]
Tested-by: Carlo E. Prelz <fluido@fluido.as>
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The FIPS specification requires that should self test for any supported
crypto algorithm fail during operation in fips mode, we need to prevent
the use of any crypto functionality until such time as the system can
be re-initialized. Seems like the best way to handle that would be
to panic the system if we were in fips mode and failed a self test.
This patch implements that functionality. I've built and run it
successfully.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx:
async_xor: dma_map destination DMA_BIDIRECTIONAL
dmaengine: protect 'id' from concurrent registrations
ioat: wait for self-test completion
|
|
If we have at least one algorithm built-in then it no longer makes
sense to have the testing framework, and hence cryptomgr to be a
module. It should be either on or off, i.e., built-in or disabled.
This just happens to stop a potential runaway modprobe loop that
seems to trigger on at least one distro.
With fixes from Evgeniy Polyakov.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Mapping the destination multiple times is a misuse of the dma-api.
Since the destination may be reused as a source, ensure that it is only
mapped once and that it is mapped bidirectionally. This appears to add
ugliness on the unmap side in that it always reads back the destination
address from the descriptor, but gcc can determine that dma_unmap is a
nop and not emit the code that calculates its arguments.
Cc: <stable@kernel.org>
Cc: Saeed Bishara <saeed@marvell.com>
Acked-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx:
fsldma: allow Freescale Elo DMA driver to be compiled as a module
fsldma: remove internal self-test from Freescale Elo DMA driver
drivers/dma/dmatest.c: switch a GFP_ATOMIC to GFP_KERNEL
dmatest: properly handle duplicate DMA channels
drivers/dma/ioat_dma.c: drop code after return
async_tx: make async_tx_run_dependencies() easier to read
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: skcipher - Use RNG interface instead of get_random_bytes
crypto: rng - RNG interface and implementation
crypto: api - Add fips_enable flag
crypto: skcipher - Move IV generators into their own modules
crypto: cryptomgr - Test ciphers using ECB
crypto: api - Use test infrastructure
crypto: cryptomgr - Add test infrastructure
crypto: tcrypt - Add alg_test interface
crypto: tcrypt - Abort and only log if there is an error
crypto: crc32c - Use Intel CRC32 instruction
crypto: tcrypt - Avoid using contiguous pages
crypto: api - Display larval objects properly
crypto: api - Export crypto_alg_lookup instead of __crypto_alg_lookup
crypto: Kconfig - Replace leading spaces with tabs
|
|
* Rename 'next' to 'dep'
* Move the channel switch check inside the loop to simplify
termination
Acked-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
This reverts commit bd699f2df6dbc2f4cba528fe598bd63a4d3702c5,
which causes camellia to fail the included self-test vectors.
It has also been confirmed that it breaks existing encrypted
disks using camellia.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Should clear the next pointer of the TX if we are sure that the
next TX (say NXT) will be submitted to the channel too. Overwise,
we break the chain of descriptors, because we lose the information
about the next descriptor to run. So next time, when invoke
async_tx_run_dependencies() with TX, it's TX->next will be NULL, and
NXT will be never submitted.
Cc: <stable@kernel.org> [2.6.26]
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
This patch makes the IV generators use the new RNG interface so
that the user can pick an RNG other than the default get_random_bytes.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch adds a random number generator interface as well as a
cryptographic pseudo-random number generator based on AES. It is
meant to be used in cases where a deterministic CPRNG is required.
One of the first applications will be as an input in the IPsec IV
generation process.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add the ability to turn FIPS-compliant mode on or off at boot
In order to be FIPS compliant, several check may need to be preformed that may
be construed as unusefull in a non-compliant mode. This patch allows us to set
a kernel flag incating that we are running in a fips-compliant mode from boot
up. It also exports that mode information to user space via a sysctl
(/proc/sys/crypto/fips_enabled).
Tested successfully by me.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch moves the default IV generators into their own modules
in order to break a dependency loop between cryptomgr, rng, and
blkcipher.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As it is we only test ciphers when combined with a mode. That means
users that do not invoke a mode of operations may get an untested
cipher.
This patch tests all ciphers using the ECB mode so that simple cipher
users such as ansi-cprng are also protected.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch makes use of the new testing infrastructure by requiring
algorithms to pass a run-time test before they're made available to
users.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch moves the newly created alg_test infrastructure into
cryptomgr. This shall allow us to use it for testing at algorithm
registrations.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch creates a new interface algorithm testing. A test can
be requested for a particular implementation of an algorithm. This
is achieved by taking both the name of the algorithm and that of
the implementation.
The all-inclusive test has also been rewritten to no longer require
a duplicate listing of all algorithms with tests. In that process
a number of missing tests have also been discovered and rectified.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The info printed is a complete waste of space when there is no error
since it doesn't tell us anything that we don't already know. If there
is an error, we can also be more verbose.
In case that there is an error, this patch also aborts the test and
returns the error to the caller. In future this will be used to
algorithms at registration time.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|