Age | Commit message (Collapse) | Author |
|
This is one more step on the way to "removable" UBI devices. It
adds reference counting for UBI devices. Every time a volume on
this device is opened - the device's refcount is increased. It
is also increased if someone is reading any sysfs file of this
UBI device or of one of its volumes.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Make the code more consistent by requiring the caller to lock the
ubi->volume_mutex, because this is what we do for updates.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Add ref_count field to UBI volumes and remove weired "vol->removed"
field. This way things are better understandable and we do not have
to do whold show_attr operation under spinlock.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Error path in volume creation is bogus. First of, it ovverrides the
'err' variable and returns zero to the caller. Second, ubi_assert()
in the release function is wrong.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
When a volume is opened, get its kref via get_device() call.
And put the reference when closing the volume. With this, we
may have a bit saner volume delete.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Transform vtbl_mutex to volumes_mutex - this just makes code
easier to understand.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Pass volume description object to the EBA function which makes
more sense, and EBA function do not have to find the volume
description object by volume ID.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Always print error code with error messages, sometimes it is
extremely helpful info.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Remove redundant ubi->major field - we have it in ubi->cdev.dev
already.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
This patch silences the following warning :
drivers/mtd/ubi/vmt.c:73: warning: 'ret' may be used uninitialized in this function
gcc can't see that we always initialize ret in all situations where it is
actually used. The one case where it's not initialized is when we BUG(),
but gcc doesn't know that we won't then continue and use an uninitialized
'ret'.
This patch results in code that does exactely the same as before, but it
also makes gcc shut up, so we generate one less line of warning noise.
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Fix "symbol shadows an earlier one" warnings. Although they are harmless
but it does not hurt to fix them and make sparse happy.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
I was experiencing overflows in multiplications for
volume->used_bytes in vmt.c & vtbl.c, while creating & resizing large volumes.
vol->used_bytes is long long however its 2 operands vol->used_ebs &
vol->usable_leb_size
are int. So their multiplication for larger values causes integer overflows.
Typecasting them solves the problem.
My machine & flash details:
64Bit dual-core AMD opteron, 1 GB RAM, linux 2.6.18.3.
mtd size = 6GB, volume size= 5GB, peb_size = 4MB.
heres patch which does the fix.
Signed-off-by: Vinit Agnihotri <vinit.agnihotri@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Do not check volumes which are currently in use because thay may be
in inconsistent state.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
When volume creation fails, we have to set ubi->volumes[vol_id]
back to NULL.
This patch also tweaks some debugging stuff.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Kill UBI's homegrown endianess handling and replace it with
the standard kernel endianess handling.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
No need to unlock the lock, this will be done at out_unlock.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two purposes: pfi
files (partial flash images) for in-system update of UBI volumes, and plain
binary images, with or without OOB data in case of NAND, for a manufacturing
step. Furthermore some tools are/and will be created that allow flash content
analysis after a system has crashed..
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
were involved too. The implementation of the kernel layer was done by Artem
B. Bityutskiy. The user-space applications and tools were written by Oliver
Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
Schmidt made some testing work as well as core functionality improvements.
Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
|