Age | Commit message (Collapse) | Author |
|
The 'state' file for a device reports, for example, when the device
has failed. Changes should be reported to userspace ASAP without
the possibility of blocking on low-memory. sysfs_notify does
have that possibility (as it takes a mutex which can be held
across a kmalloc) so use sysfs_notify_dirent instead.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Now that we have sysfs_notify_dirent, use it to notify changes
to md/array_state.
As sysfs_notify_dirent can be called in atomic context, we can
remove the delayed notify and the MD_NOTIFY_ARRAY_STATE flag.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Having
function (args)
instead of
function(args)
make is harder to search for calls of particular functions.
So remove all those spaces.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
A lot of cruft has gathered over the years. Time to remove it.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
This patch renames hash_spacing and preshift to spacing and
sector_shift respectively with the following change of semantics:
Case 1: (sizeof(sector_t) <= sizeof(u32)).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this case, we have sector_shift = preshift = 0 and spacing =
2 * hash_spacing.
Hence, the index for the hash table which is computed by the new code
in which_dev() as sector / spacing equals the old value which was
(sector/2) / hash_spacing.
Note also that the value of nb_zone stays the same because both sz
and base double.
Case 2: (sizeof(sector_t) > sizeof(u32)).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(aka the shifting dance case). Here we have sector_shift = preshift +
1 and
spacing = 2 * hash_spacing
during the computation of nb_zone and curr_sector, but
spacing = hash_spacing
in which_dev() because in the last hunk of the patch for linear.c we
shift down conf->spacing (= 2 * hash_spacing) by one more bit than
in the old code.
Hence in the computation of nb_zone, sz and base have the same value
as before, so nb_zone is not affected. Also curr_sector in the next
hunk stays the same.
In which_dev() the hash table index is computed as
(sector >> sector_shift) / spacing
In view of sector_shift = preshift + 1 and spacing = hash_spacing,
this equals
((sector/2) >> preshift) / hash_spacing
which is the value computed by the old code.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Rename them to num_sectors and start_sector which is more descriptive.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
sysfs_notify might sleep, so do not call it from md_safemode_timeout.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
All modifications and most access to the mddev->disks list are made
under the reconfig_mutex lock. However there are three places where
the list is walked without any locking. If a reconfig happens at this
time, havoc (and oops) can ensue.
So use RCU to protect these accesses:
- wrap them in rcu_read_{,un}lock()
- use list_for_each_entry_rcu
- add to the list with list_add_rcu
- delete from the list with list_del_rcu
- delay the 'free' with call_rcu rather than schedule_work
Note that export_rdev did a list_del_init on this list. In almost all
cases the entry was not in the list anymore so it was a no-op and so
safe. It is no longer safe as after list_del_rcu we may not touch
the list_head.
An audit shows that export_rdev is called:
- after unbind_rdev_from_array, in which case the delete has
already been done,
- after bind_rdev_to_array fails, in which case the delete isn't needed.
- before the device has been put on a list at all (e.g. in
add_new_disk where reading the superblock fails).
- and in autorun devices after a failure when the device is on a
different list.
So remove the list_del_init call from export_rdev, and add it back
immediately before the called to export_rdev for that last case.
Note also that ->same_set is sometimes used for lists other than
mddev->list (e.g. candidates). In these cases rcu is not needed.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Open isn't the only thing that increments ->active. e.g. reading
/proc/mdstat will increment it briefly. So to avoid false positives
in testing for concurrent access, introduce a new counter that counts
just the number of times the md device it open.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
This patch renames the array_size field of struct mddev_s to array_sectors
and converts all instances to use units of 512 byte sectors instead of 1k
blocks.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
Rename it to sb_start to make sure all users have been converted.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
md_allow_write() marks the metadata dirty while holding mddev->lock and then
waits for the write to complete. For externally managed metadata this causes a
deadlock as userspace needs to take the lock to communicate that the metadata
update has completed.
Change md_allow_write() in the 'external' case to start the 'mark active'
operation and then return -EAGAIN. The expected side effects while waiting for
userspace to write 'active' to 'array_state' are holding off reshape (code
currently handles -ENOMEM), cause some 'stripe_cache_size' change requests to
fail, cause some GET_BITMAP_FILE ioctl requests to fall back to GFP_NOIO, and
cause updates to 'raid_disks' to fail. Except for 'stripe_cache_size' changes
these failures can be mitigated by coordinating with mdmon.
md_write_start() still prevents writes from occurring until the metadata
handler has had a chance to take action as it unconditionally waits for
MD_CHANGE_CLEAN to be cleared.
[neilb@suse.de: return -EAGAIN, try GFP_NOIO]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
From: Dan Williams <dan.j.williams@intel.com>
Currently ops_run_biodrain and other locations have extra logic to determine
which blocks are processed in the prexor and non-prexor cases. This can be
eliminated if handle_write_operations5 flags the blocks to be processed in all
cases via R5_Wantdrain. The presence of the prexor operation is tracked in
sh->reconstruct_state.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
From: Dan Williams <dan.j.williams@intel.com>
Track the state of reconstruct operations (recalculating the parity block
usually due to incoming writes, or as part of array expansion) Reduces the
scope of the STRIPE_OP_{BIODRAIN,PREXOR,POSTXOR} flags to only tracking whether
a reconstruct operation has been requested via the ops_request field of struct
stripe_head_state.
This is the final step in the removal of ops.{pending,ack,complete,count}, i.e.
the STRIPE_OP_{BIODRAIN,PREXOR,POSTXOR} flags only request an operation and do
not track the state of the operation.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
From: Dan Williams <dan.j.williams@intel.com>
The STRIPE_OP_* flags record the state of stripe operations which are
performed outside the stripe lock. Their use in indicating which
operations need to be run is straightforward; however, interpolating what
the next state of the stripe should be based on a given combination of
these flags is not straightforward, and has led to bugs. An easier to read
implementation with minimal degrees of freedom is needed.
Towards this goal, this patch introduces explicit states to replace what was
previously interpolated from the STRIPE_OP_* flags. For now this only converts
the handle_parity_checks5 path, removing a user of the
ops.{pending,ack,complete,count} fields of struct stripe_operations.
This conversion also found a remaining issue with the current code. There is
a small window for a drive to fail between when we schedule a repair and when
the parity calculation for that repair completes. When this happens we will
writeback to 'failed_num' when we really want to write back to 'pd_idx'.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
From: Dan Williams <dan.j.williams@intel.com>
The R5_Want{Read,Write} flags already gate i/o. So, this flag is
superfluous and we can unconditionally call ops_run_io().
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
From: Dan Williams <dan.j.williams@intel.com>
This micro-optimization allowed the raid code to skip a re-read of the
parity block after checking parity. It took advantage of the fact that
xor-offload-engines have their own internal result buffer and can check
parity without writing to memory. Remove it for the following reasons:
1/ It is a layering violation for MD to need to manage the DMA and
non-DMA paths within async_xor_zero_sum
2/ Bad precedent to toggle the 'ops' flags outside the lock
3/ Hard to realize a performance gain as reads will not need an updated
parity block and writes will dirty it anyways.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
The important state change happens during an interrupt
in md_error. So just set a flag there and call sysfs_notify
later in process context.
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
When the 'resync' thread starts or stops, when we explicitly
set sync_action, or when we determine that there is definitely nothing
to do, we notify sync_action.
To stop "sync_action" from occasionally showing the wrong value,
we introduce a new flags - MD_RECOVERY_RECOVER - to say that a
recovery is probably needed or happening, and we make sure
that we set MD_RECOVERY_RUNNING before clearing MD_RECOVERY_NEEDED.
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
This makes it possible to just resync a small part of an array.
e.g. if a drive reports that it has questionable sectors,
a 'repair' of just the region covering those sectors will
cause them to be read and, if there is an error, re-written
with correct data.
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
When an array is degraded, bits in the write-intent bitmap are not
cleared, so that if the missing device is re-added, it can be synced
by only updated those parts of the device that have changed since
it was removed.
The enable this a 'events_cleared' value is stored. It is the event
counter for the array the last time that any bits were cleared.
Sometimes - if a device disappears from an array while it is 'clean' -
the events_cleared value gets updated incorrectly (there are subtle
ordering issues between updateing events in the main metadata and the
bitmap metadata) resulting in the missing device appearing to require
a full resync when it is re-added.
With this patch, we update events_cleared precisely when we are about
to clear a bit in the bitmap. We record events_cleared when we clear
the bit internally, and copy that to the superblock which is written
out before the bit on storage. This makes it more "obviously correct".
We also need to update events_cleared when the event_count is going
backwards (as happens on a dirty->clean transition of a non-degraded
array).
Thanks to Mike Snitzer for identifying this problem and testing early
"fixes".
Cc: "Mike Snitzer" <snitzer@gmail.com>
Signed-off-by: Neil Brown <neilb@suse.de>
|
|
When we get any IO error during a recovery (rebuilding a spare), we abort
the recovery and restart it.
For RAID6 (and multi-drive RAID1) it may not be best to restart at the
beginning: when multiple failures can be tolerated, the recovery may be
able to continue and re-doing all that has already been done doesn't make
sense.
We already have the infrastructure to record where a recovery is up to
and restart from there, but it is not being used properly.
This is because:
- We sometimes abort with MD_RECOVERY_ERR rather than just MD_RECOVERY_INTR,
which causes the recovery not be be checkpointed.
- We remove spares and then re-added them which loses important state
information.
The distinction between MD_RECOVERY_ERR and MD_RECOVERY_INTR really isn't
needed. If there is an error, the relevant drive will be marked as
Faulty, and that is enough to ensure correct handling of the error. So we
first remove MD_RECOVERY_ERR, changing some of the uses of it to
MD_RECOVERY_INTR.
Then we cause the attempt to remove a non-faulty device from an array to
fail (unless recovery is impossible as the array is too degraded). Then
when remove_and_add_spares attempts to remove the devices on which
recovery can continue, it will fail, they will remain in place, and
recovery will continue on them as desired.
Issue: If we are halfway through rebuilding a spare and another drive
fails, and a new spare is immediately available, do we want to:
1/ complete the current rebuild, then go back and rebuild the new spare or
2/ restart the rebuild from the start and rebuild both devices in
parallel.
Both options can be argued for. The code currently takes option 2 as
a/ this requires least code change
b/ this results in a minimally-degraded array in minimal time.
Cc: "Eivind Sarto" <ivan@kasenna.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In some configurations, a raid6 resync can be limited by CPU speed
(Calculating P and Q and moving data) rather than by device speed. In
these cases there is nothing to be gained byt serialising resync of arrays
that share a device, and doing the resync in parallel can provide benefit.
So add a sysfs tunable to flag an array as being allowed to resync in
parallel with other arrays that use (a different part of) the same device.
Signed-off-by: Bernd Schubert <bs@q-leap.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Kill the trivial and rather pointless file_path wrapper around d_path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds a proper extern for mdp_major in include/linux/raid/md.h
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Allows a userspace metadata handler to take action upon detecting a device
failure.
Based on an original patch by Neil Brown.
Changes:
-added blocked_wait waitqueue to rdev
-don't qualify Blocked with Faulty always let userspace block writes
-added md_wait_for_blocked_rdev to wait for the block device to be clear, if
userspace misses the notification another one is sent every 5 seconds
-set MD_RECOVERY_NEEDED after clearing "blocked"
-kill DoBlock flag, just test mddev->external
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Improve write performance by preventing the delayed_list from dumping all its
stripes onto the handle_list in one shot. Delayed stripes are now further
delayed by being held on the 'hold_list'. The 'hold_list' is bypassed when:
* a STRIPE_IO_STARTED stripe is found at the head of 'handle_list'
* 'handle_list' is empty and i/o is being done to satisfy full stripe-width
write requests
* 'bypass_count' is less than 'bypass_threshold'. By default the threshold
is 1, i.e. every other stripe handled is a preread stripe provided the
top two conditions are false.
Benchmark data:
System: 2x Xeon 5150, 4x SATA, mem=1GB
Baseline: 2.6.24-rc7
Configuration: mdadm --create /dev/md0 /dev/sd[b-e] -n 4 -l 5 --assume-clean
Test1: dd if=/dev/zero of=/dev/md0 bs=1024k count=2048
* patched: +33% (stripe_cache_size = 256), +25% (stripe_cache_size = 512)
Test2: tiobench --size 2048 --numruns 5 --block 4096 --block 131072 (XFS)
* patched: +13%
* patched + preread_bypass_threshold = 0: +37%
Changes since v1:
* reduce bypass_threshold from (chunk_size / sectors_per_chunk) to (1) and
make it configurable. This defaults to fairness and modest performance
gains out of the box.
Changes since v2:
* [neilb@suse.de]: kill STRIPE_PRIO_HI and preread_needed as they are not
necessary, the important change was clearing STRIPE_DELAYED in
add_stripe_bio and this has been moved out to make_request for the hang
fix.
* [neilb@suse.de]: simplify get_priority_stripe
* [dan.j.williams@intel.com]: reset the bypass_count when ->hold_list is
sampled empty (+11%)
* [dan.j.williams@intel.com]: decrement the bypass_count at the detection
of stripes being naturally promoted off of hold_list +2%. Note, resetting
bypass_count instead of decrementing on these events yields +4% but that is
probably too aggressive.
Changes since v3:
* cosmetic fixups
Tested-by: James W. Laferriere <babydr@baby-dragons.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
None of these files use any of the functionality promised by
asm/semaphore.h. It's possible that they (or some user of them) rely
on it dragging in some unrelated header file, but I can't build all
these files, so we'll have to fix any build failures as they come up.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
|
|
When a raid1 array is stopped, all components currently get added to the list
for auto-detection. However we should really only add components that were
found by autodetection in the first place. So add a flag to record that
information, and use it.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
On an md array with a write-intent bitmap, a thread wakes up every few seconds
and scans the bitmap looking for work to do. If the array is idle, there will
be no work to do, but a lot of scanning is done to discover this.
So cache the fact that the bitmap is completely clean, and avoid scanning the
whole bitmap when the cache is known to be clean.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
ITERATE_RDEV_PENDING.
Finish ITERATE_ to for_each conversion.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
As this is more in line with common practice in the kernel. Also swap the
args around to be more like list_for_each.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, a given device is "claimed" by a particular array so that it cannot
be used by other arrays.
This is not ideal for DDF and other metadata schemes which have their own
partitioning concept.
So for externally managed metadata, just claim the device for md in general,
require that "offset" and "size" are set properly for each device, and make
sure that if a device is included in different arrays then the active sections
do not overlap.
This involves adding another flag to the rdev which makes it awkward to set
"->flags = 0" to clear certain flags. So now clear flags explicitly by name
when we want to clear things.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This allows userspace to control resync/reshape progress and synchronise it
with other activities, such as shared access in a SAN, or backing up critical
sections during a tricky reshape.
Writing a number of sectors (which must be a multiple of the chunk size if
such is meaningful) causes a resync to pause when it gets to that point.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
- Add a state flag 'external' to indicate that the metadata is managed
externally (by user-space) so important changes need to be
left of user-space to handle.
Alternates are non-persistant ('none') where there is no stable metadata -
after the array is stopped there is no record of it's status - and
internal which can be version 0.90 or version 1.x
These are selected by writing to the 'metadata' attribute.
- move the updating of superblocks (sync_sbs) to after we have checked if
there are any superblocks or not.
- New array state 'write_pending'. This means that the metadata records
the array as 'clean', but a write has been requested, so the metadata has
to be updated to record a 'dirty' array before the write can continue.
This change is reported to md by writing 'active' to the array_state
attribute.
- tidy up marking of sb_dirty:
- don't set sb_dirty when resync finishes as md_check_recovery
calls md_update_sb when the sync thread finishes anyway.
- Don't set sb_dirty in multipath_run as the array might not be dirty.
- don't mark superblock dirty when switching to 'clean' if there
is no internal superblock (if external, userspace can choose to
update the superblock whenever it chooses to).
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently an md array with a write-intent bitmap does not updated that bitmap
to reflect successful partial resync. Rather the entire bitmap is updated
when the resync completes.
This is because there is no guarentee that resync requests will complete in
order, and tracking each request individually is unnecessarily burdensome.
However there is value in regularly updating the bitmap, so add code to
periodically pause while all pending sync requests complete, then update the
bitmap. Doing this only every few seconds (the same as the bitmap update
time) does not notciably affect resync performance.
[snitzer@gmail.com: export bitmap_cond_end_sync]
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: "Mike Snitzer" <snitzer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
bitmap_active() no longer exists and BITMAP_ACTIVE is no longer used.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Some of the code has been gradually transitioned to using the proper
struct request_queue, but there's lots left. So do a full sweet of
the kernel and get rid of this typedef and replace its uses with
the proper type.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
bitmap_unplug only ever returns 0, so it may as well be void. Two callers try
to print a message if it returns non-zero, but that message is already printed
by bitmap_file_kick.
write_page returns an error which is not consistently checked. It always
causes BITMAP_WRITE_ERROR to be set on an error, and that can more
conveniently be checked.
When the return of write_page is checked, an error causes bitmap_file_kick to
be called - so move that call into write_page - and protect against recursive
calls into bitmap_file_kick.
bitmap_update_sb returns an error that is never checked.
So make these 'void' and be consistent about checking the bit.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Don't use 'unsigned' variable to track sync vs non-sync IO, as the only thing
we want to do with them is a signed comparison, and fix up the comment which
had become quite wrong.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a read bio is attached to the stripe and the corresponding block is
marked R5_UPTODATE, then a read (biofill) operation is scheduled to copy
the data from the stripe cache to the bio buffer. handle_stripe flags the
blocks to be operated on with the R5_Wantfill flag. If new read requests
arrive while raid5_run_ops is running they will not be handled until
handle_stripe is scheduled to run again.
Changelog:
* cleanup to_read and to_fill accounting
* do not fail reads that have reached the cache
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
|
|
handle_stripe will compute a block when a backing disk has failed, or when
it determines it can save a disk read by computing the block from all the
other up-to-date blocks.
Previously a block would be computed under the lock and subsequent logic in
handle_stripe could use the newly up-to-date block. With the raid5_run_ops
implementation the compute operation is carried out a later time outside
the lock. To preserve the old functionality we take advantage of the
dependency chain feature of async_tx to flag the block as R5_Wantcompute
and then let other parts of handle_stripe operate on the block as if it
were up-to-date. raid5_run_ops guarantees that the block will be ready
before it is used in another operation.
However, this only works in cases where the compute and the dependent
operation are scheduled at the same time. If a previous call to
handle_stripe sets the R5_Wantcompute flag there is no facility to pass the
async_tx dependency chain across successive calls to raid5_run_ops. The
req_compute variable protects against this case.
Changelog:
* remove the req_compute BUG_ON
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
|
|
When the raid acceleration work was proposed, Neil laid out the following
attack plan:
1/ move the xor and copy operations outside spin_lock(&sh->lock)
2/ find/implement an asynchronous offload api
The raid5_run_ops routine uses the asynchronous offload api (async_tx) and
the stripe_operations member of a stripe_head to carry out xor+copy
operations asynchronously, outside the lock.
To perform operations outside the lock a new set of state flags is needed
to track new requests, in-flight requests, and completed requests. In this
new model handle_stripe is tasked with scanning the stripe_head for work,
updating the stripe_operations structure, and finally dropping the lock and
calling raid5_run_ops for processing. The following flags outline the
requests that handle_stripe can make of raid5_run_ops:
STRIPE_OP_BIOFILL
- copy data into request buffers to satisfy a read request
STRIPE_OP_COMPUTE_BLK
- generate a missing block in the cache from the other blocks
STRIPE_OP_PREXOR
- subtract existing data as part of the read-modify-write process
STRIPE_OP_BIODRAIN
- copy data out of request buffers to satisfy a write request
STRIPE_OP_POSTXOR
- recalculate parity for new data that has entered the cache
STRIPE_OP_CHECK
- verify that the parity is correct
STRIPE_OP_IO
- submit i/o to the member disks (note this was already performed outside
the stripe lock, but it made sense to add it as an operation type
The flow is:
1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending
2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the
operation to the async_tx api
3/ async_tx triggers the completion callback routine to set
sh->ops.complete and release the stripe
4/ handle_stripe runs again to finish the operation and optionally submit
new operations that were previously blocked
Note this patch just defines raid5_run_ops, subsequent commits (one per
major operation type) modify handle_stripe to take advantage of this
routine.
Changelog:
* removed ops_complete_biodrain in favor of ops_complete_postxor and
ops_complete_write.
* removed the raid5_run_ops workqueue
* call bi_end_io for reads in ops_complete_biofill, saves a call to
handle_stripe
* explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown
* fix race between async engines and bi_end_io call for reads, Neil Brown
* remove unnecessary spin_lock from ops_complete_biofill
* remove test_and_set/test_and_clear BUG_ONs, Neil Brown
* remove explicit interrupt handling for channel switching, this feature
was absorbed (i.e. it is now implicit) by the async_tx api
* use return_io in ops_complete_biofill
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
|
|
handle_stripe5 and handle_stripe6 have very deep logic paths handling the
various states of a stripe_head. By introducing the 'stripe_head_state'
and 'r6_state' objects, large portions of the logic can be moved to
sub-routines.
'struct stripe_head_state' consumes all of the automatic variables that previously
stood alone in handle_stripe5,6. 'struct r6_state' contains the handle_stripe6
specific variables like p_failed and q_failed.
One of the nice side effects of the 'stripe_head_state' change is that it
allows for further reductions in code duplication between raid5 and raid6.
The following new routines are shared between raid5 and raid6:
handle_completed_write_requests
handle_requests_to_failed_array
handle_stripe_expansion
Changes:
* v2: fixed 'conf->raid_disk-1' for the raid6 'handle_stripe_expansion' path
* v3: removed the unused 'dirty' field from struct stripe_head_state
* v3: coalesced open coded bi_end_io routines into return_io()
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
|
|
The async_tx api provides methods for describing a chain of asynchronous
bulk memory transfers/transforms with support for inter-transactional
dependencies. It is implemented as a dmaengine client that smooths over
the details of different hardware offload engine implementations. Code
that is written to the api can optimize for asynchronous operation and the
api will fit the chain of operations to the available offload resources.
I imagine that any piece of ADMA hardware would register with the
'async_*' subsystem, and a call to async_X would be routed as
appropriate, or be run in-line. - Neil Brown
async_tx exploits the capabilities of struct dma_async_tx_descriptor to
provide an api of the following general format:
struct dma_async_tx_descriptor *
async_<operation>(..., struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
struct dma_chan *chan = async_tx_find_channel(depend_tx, <operation>);
struct dma_device *device = chan ? chan->device : NULL;
int int_en = cb_fn ? 1 : 0;
struct dma_async_tx_descriptor *tx = device ?
device->device_prep_dma_<operation>(chan, len, int_en) : NULL;
if (tx) { /* run <operation> asynchronously */
...
tx->tx_set_dest(addr, tx, index);
...
tx->tx_set_src(addr, tx, index);
...
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
} else { /* run <operation> synchronously */
...
<operation>
...
async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param);
}
return tx;
}
async_tx_find_channel() returns a capable channel from its pool. The
channel pool is organized as a per-cpu array of channel pointers. The
async_tx_rebalance() routine is tasked with managing these arrays. In the
uniprocessor case async_tx_rebalance() tries to spread responsibility
evenly over channels of similar capabilities. For example if there are two
copy+xor channels, one will handle copy operations and the other will
handle xor. In the SMP case async_tx_rebalance() attempts to spread the
operations evenly over the cpus, e.g. cpu0 gets copy channel0 and xor
channel0 while cpu1 gets copy channel 1 and xor channel 1. When a
dependency is specified async_tx_find_channel defaults to keeping the
operation on the same channel. A xor->copy->xor chain will stay on one
channel if it supports both operation types, otherwise the transaction will
transition between a copy and a xor resource.
Currently the raid5 implementation in the MD raid456 driver has been
converted to the async_tx api. A driver for the offload engines on the
Intel Xscale series of I/O processors, iop-adma, is provided in a later
commit. With the iop-adma driver and async_tx, raid456 is able to offload
copy, xor, and xor-zero-sum operations to hardware engines.
On iop342 tiobench showed higher throughput for sequential writes (20 - 30%
improvement) and sequential reads to a degraded array (40 - 55%
improvement). For the other cases performance was roughly equal, +/- a few
percentage points. On a x86-smp platform the performance of the async_tx
implementation (in synchronous mode) was also +/- a few percentage points
of the original implementation. According to 'top' on iop342 CPU
utilization drops from ~50% to ~15% during a 'resync' while the speed
according to /proc/mdstat doubles from ~25 MB/s to ~50 MB/s.
The tiobench command line used for testing was: tiobench --size 2048
--block 4096 --block 131072 --dir /mnt/raid --numruns 5
* iop342 had 1GB of memory available
Details:
* if CONFIG_DMA_ENGINE=n the asynchronous path is compiled away by making
async_tx_find_channel a static inline routine that always returns NULL
* when a callback is specified for a given transaction an interrupt will
fire at operation completion time and the callback will occur in a
tasklet. if the the channel does not support interrupts then a live
polling wait will be performed
* the api is written as a dmaengine client that requests all available
channels
* In support of dependencies the api implicitly schedules channel-switch
interrupts. The interrupt triggers the cleanup tasklet which causes
pending operations to be scheduled on the next channel
* Xor engines treat an xor destination address differently than a software
xor routine. To the software routine the destination address is an implied
source, whereas engines treat it as a write-only destination. This patch
modifies the xor_blocks routine to take a an explicit destination address
to mirror the hardware.
Changelog:
* fixed a leftover debug print
* don't allow callbacks in async_interrupt_cond
* fixed xor_block changes
* fixed usage of ASYNC_TX_XOR_DROP_DEST
* drop dma mapping methods, suggested by Chris Leech
* printk warning fixups from Andrew Morton
* don't use inline in C files, Adrian Bunk
* select the API when MD is enabled
* BUG_ON xor source counts <= 1
* implicitly handle hardware concerns like channel switching and
interrupts, Neil Brown
* remove the per operation type list, and distribute operation capabilities
evenly amongst the available channels
* simplify async_tx_find_channel to optimize the fast path
* introduce the channel_table_initialized flag to prevent early calls to
the api
* reorganize the code to mimic crypto
* include mm.h as not all archs include it in dma-mapping.h
* make the Kconfig options non-user visible, Adrian Bunk
* move async_tx under crypto since it is meant as 'core' functionality, and
the two may share algorithms in the future
* move large inline functions into c files
* checkpatch.pl fixes
* gpl v2 only correction
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-By: NeilBrown <neilb@suse.de>
|
|
The async_tx api tries to use a dma engine for an operation, but will fall
back to an optimized software routine otherwise. Xor support is
implemented using the raid5 xor routines. For organizational purposes this
routine is moved to a common area.
The following fixes are also made:
* rename xor_block => xor_blocks, suggested by Adrian Bunk
* ensure that xor.o initializes before md.o in the built-in case
* checkpatch.pl fixes
* mark calibrate_xor_blocks __init, Adrian Bunk
Cc: Adrian Bunk <bunk@stusta.de>
Cc: NeilBrown <neilb@suse.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
It is possible that real data or metadata follows the bitmap without full page
alignment.
So limit the last write to be only the required number of bytes, rounded up to
the hard sector size of the device.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 5b479c91da90eef605f851508744bfe8269591a0.
Quoth Neil Brown:
"It causes an oops when auto-detecting raid arrays, and it doesn't
seem easy to fix.
The array may not be 'open' when do_md_run is called, so
bdev->bd_disk might be NULL, so bd_set_size can oops.
This whole approach of opening an md device before it has been
assembled just seems to get more and more painful. I think I'm going
to have to come up with something clever to provide both backward
comparability with usage expectation, and sane integration into the
rest of the kernel."
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|