Age | Commit message (Collapse) | Author |
|
The nanosleep cleanup allows to remove the data field of hrtimer. The
callback function can use container_of() to get it's own data. Since the
hrtimer structure is anyway embedded in other structures, this adds no
overhead.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Make the softlockup detector purely timer-interrupt driven, removing
softirq-context (timer) dependencies. This means that if the softlockup
watchdog triggers, it has truly observed a longer than 10 seconds
scheduling delay of a SCHED_FIFO prio 99 task.
(the patch also turns off the softlockup detector during the initial bootup
phase and does small style fixes)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The hooks in the slab cache allocator code path for support of NUMA
mempolicies and cpuset memory spreading are in an important code path. Many
systems will use neither feature.
This patch optimizes those hooks down to a single check of some bits in the
current tasks task_struct flags. For non NUMA systems, this hook and related
code is already ifdef'd out.
The optimization is done by using another task flag, set if the task is using
a non-default NUMA mempolicy. Taking this flag bit along with the
PF_SPREAD_PAGE and PF_SPREAD_SLAB flag bits added earlier in this 'cpuset
memory spreading' patch set, one can check for the combination of any of these
special case memory placement mechanisms with a single test of the current
tasks task_struct flags.
This patch also tightens up the code, to save a few bytes of kernel text
space, and moves some of it out of line. Due to the nested inlines called
from multiple places, we were ending up with three copies of this code, which
once we get off the main code path (for local node allocation) seems a bit
wasteful of instruction memory.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch provides the implementation and cpuset interface for an alternative
memory allocation policy that can be applied to certain kinds of memory
allocations, such as the page cache (file system buffers) and some slab caches
(such as inode caches).
The policy is called "memory spreading." If enabled, it spreads out these
kinds of memory allocations over all the nodes allowed to a task, instead of
preferring to place them on the node where the task is executing.
All other kinds of allocations, including anonymous pages for a tasks stack
and data regions, are not affected by this policy choice, and continue to be
allocated preferring the node local to execution, as modified by the NUMA
mempolicy.
There are two boolean flag files per cpuset that control where the kernel
allocates pages for the file system buffers and related in kernel data
structures. They are called 'memory_spread_page' and 'memory_spread_slab'.
If the per-cpuset boolean flag file 'memory_spread_page' is set, then the
kernel will spread the file system buffers (page cache) evenly over all the
nodes that the faulting task is allowed to use, instead of preferring to put
those pages on the node where the task is running.
If the per-cpuset boolean flag file 'memory_spread_slab' is set, then the
kernel will spread some file system related slab caches, such as for inodes
and dentries evenly over all the nodes that the faulting task is allowed to
use, instead of preferring to put those pages on the node where the task is
running.
The implementation is simple. Setting the cpuset flags 'memory_spread_page'
or 'memory_spread_cache' turns on the per-process flags PF_SPREAD_PAGE or
PF_SPREAD_SLAB, respectively, for each task that is in the cpuset or
subsequently joins that cpuset. In subsequent patches, the page allocation
calls for the affected page cache and slab caches are modified to perform an
inline check for these flags, and if set, a call to a new routine
cpuset_mem_spread_node() returns the node to prefer for the allocation.
The cpuset_mem_spread_node() routine is also simple. It uses the value of a
per-task rotor cpuset_mem_spread_rotor to select the next node in the current
tasks mems_allowed to prefer for the allocation.
This policy can provide substantial improvements for jobs that need to place
thread local data on the corresponding node, but that need to access large
file system data sets that need to be spread across the several nodes in the
jobs cpuset in order to fit. Without this patch, especially for jobs that
might have one thread reading in the data set, the memory allocation across
the nodes in the jobs cpuset can become very uneven.
A couple of Copyright year ranges are updated as well. And a couple of email
addresses that can be found in the MAINTAINERS file are removed.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: Jens Axboe <axboe@suse.de>
|
|
The patch '[PATCH] RCU signal handling' [1] added an export for
__put_task_struct_cb, a put_task_struct helper newly introduced in that
patch. But the put_task_struct couldn't be used modular previously as
__put_task_struct wasn't exported. There are not callers of it in modular
code, and it shouldn't be exported because we don't want drivers to hold
references to task_structs.
This patch removes the export and folds __put_task_struct into
__put_task_struct_cb as there's no other caller.
[1] http://www2.kernel.org/git/gitweb.cgi?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=e56d090310d7625ecb43a1eeebd479f04affb48b
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch adds mm->task_size to keep track of the task size of a given mm
and uses that to fix the powerpc vdso so that it uses the mm task size to
decide what pages to fault in instead of the current thread flags (which
broke when ptracing).
(akpm: I expect that mm_struct.task_size will become the way in which we
finally sort out the confusion between 32-bit processes and 32-bit mm's. It
may need tweaks, but at this stage this patch is powerpc-only.)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Revert commit d7102e95b7b9c00277562c29aad421d2d521c5f6:
[PATCH] sched: filter affine wakeups
Apparently caused more than 10% performance regression for aim7 benchmark.
The setup in use is 16-cpu HP rx8620, 64Gb of memory and 12 MSA1000s with 144
disks. Each disk is 72Gb with a single ext3 filesystem (courtesy of HP, who
supplied benchmark results).
The problem is, for aim7, the wake-up pattern is random, but it still needs
load balancing action in the wake-up path to achieve best performance. With
the above commit, lack of load balancing hurts that workload.
However, for workloads like database transaction processing, the requirement
is exactly opposite. In the wake up path, best performance is achieved with
absolutely zero load balancing. We simply wake up the process on the CPU that
it was previously run. Worst performance is obtained when we do load
balancing at wake up.
There isn't an easy way to auto detect the workload characteristics. Ingo's
earlier patch that detects idle CPU and decide whether to load balance or not
doesn't perform with aim7 either since all CPUs are busy (it causes even
bigger perf. regression).
Revert commit d7102e95b7b9c00277562c29aad421d2d521c5f6, which causes more
than 10% performance regression with aim7.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Clear unblockable signals beforehand.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The TIF_RESTORE_SIGMASK flag allows us to have a generic implementation of
sys_rt_sigsuspend() instead of duplicating it for each architecture. This
provides such an implementation and makes arch/powerpc use it.
It also tidies up the ppc32 sys_sigsuspend() to use TIF_RESTORE_SIGMASK.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add a new SCHED_BATCH (3) scheduling policy: such tasks are presumed
CPU-intensive, and will acquire a constant +5 priority level penalty. Such
policy is nice for workloads that are non-interactive, but which do not
want to give up their nice levels. The policy is also useful for workloads
that want a deterministic scheduling policy without interactivity causing
extra preemptions (between that workload's tasks).
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Patchset annotates arch/* uses of ->thread_info. Ones that really are about
access of thread_info of given process are simply switched to
task_thread_info(task); ones that deal with access to objects on stack are
switched to new helper - task_stack_page(). A _lot_ of the latter are
actually open-coded instances of "find where pt_regs are"; those are
consolidated into task_pt_regs(task) (many architectures actually have such
helper already).
Note that these annotations are not mandatory - any code not converted to
these helpers still works. However, they clean up a lot of places and have
actually caught a number of bugs, so converting out of tree ports would be a
good idea...
As an example of breakage caught by that stuff, see i386 pt_regs mess - we
used to have it open-coded in a bunch of places and when back in April Stas
had fixed a bug in copy_thread(), the rest had been left out of sync. That
required two followup patches (the latest - just before 2.6.15) _and_ still
had left /proc/*/stat eip field broken. Try ps -eo eip on i386 and watch the
junk...
This patch:
new helper - task_stack_page(task). Returns pointer to the memory object
containing task stack; usually thread_info of task sits in the beginning
of that object.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
)
From: Nick Piggin <nickpiggin@yahoo.com.au>
Track the last waker CPU, and only consider wakeup-balancing if there's a
match between current waker CPU and the previous waker CPU. This ensures
that there is some correlation between two subsequent wakeup events before
we move the task. Should help random-wakeup workloads on large SMP
systems, by reducing the migration attempts by a factor of nr_cpus.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
)
From: Ingo Molnar <mingo@elte.hu>
This is the latest version of the scheduler cache-hot-auto-tune patch.
The first problem was that detection time scaled with O(N^2), which is
unacceptable on larger SMP and NUMA systems. To solve this:
- I've added a 'domain distance' function, which is used to cache
measurement results. Each distance is only measured once. This means
that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT
distances 0 and 1, and on SMP distance 0 is measured. The code walks
the domain tree to determine the distance, so it automatically follows
whatever hierarchy an architecture sets up. This cuts down on the boot
time significantly and removes the O(N^2) limit. The only assumption
is that migration costs can be expressed as a function of domain
distance - this covers the overwhelming majority of existing systems,
and is a good guess even for more assymetric systems.
[ People hacking systems that have assymetries that break this
assumption (e.g. different CPU speeds) should experiment a bit with
the cpu_distance() function. Adding a ->migration_distance factor to
the domain structure would be one possible solution - but lets first
see the problem systems, if they exist at all. Lets not overdesign. ]
Another problem was that only a single cache-size was used for measuring
the cost of migration, and most architectures didnt set that variable
up. Furthermore, a single cache-size does not fit NUMA hierarchies with
L3 caches and does not fit HT setups, where different CPUs will often
have different 'effective cache sizes'. To solve this problem:
- Instead of relying on a single cache-size provided by the platform and
sticking to it, the code now auto-detects the 'effective migration
cost' between two measured CPUs, via iterating through a wide range of
cachesizes. The code searches for the maximum migration cost, which
occurs when the working set of the test-workload falls just below the
'effective cache size'. I.e. real-life optimized search is done for
the maximum migration cost, between two real CPUs.
This, amongst other things, has the positive effect hat if e.g. two
CPUs share a L2/L3 cache, a different (and accurate) migration cost
will be found than between two CPUs on the same system that dont share
any caches.
(The reliable measurement of migration costs is tricky - see the source
for details.)
Furthermore i've added various boot-time options to override/tune
migration behavior.
Firstly, there's a blanket override for autodetection:
migration_cost=1000,2000,3000
will override the depth 0/1/2 values with 1msec/2msec/3msec values.
Secondly, there's a global factor that can be used to increase (or
decrease) the autodetected values:
migration_factor=120
will increase the autodetected values by 20%. This option is useful to
tune things in a workload-dependent way - e.g. if a workload is
cache-insensitive then CPU utilization can be maximized by specifying
migration_factor=0.
I've tested the autodetection code quite extensively on x86, on 3
P3/Xeon/2MB, and the autodetected values look pretty good:
Dual Celeron (128K L2 cache):
---------------------
migration cost matrix (max_cache_size: 131072, cpu: 467 MHz):
---------------------
[00] [01]
[00]: - 1.7(1)
[01]: 1.7(1) -
---------------------
cacheflush times [2]: 0.0 (0) 1.7 (1784008)
---------------------
Here the slow memory subsystem dominates system performance, and even
though caches are small, the migration cost is 1.7 msecs.
Dual HT P4 (512K L2 cache):
---------------------
migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz):
---------------------
[00] [01] [02] [03]
[00]: - 0.4(1) 0.0(0) 0.4(1)
[01]: 0.4(1) - 0.4(1) 0.0(0)
[02]: 0.0(0) 0.4(1) - 0.4(1)
[03]: 0.4(1) 0.0(0) 0.4(1) -
---------------------
cacheflush times [2]: 0.0 (33900) 0.4 (448514)
---------------------
Here it can be seen that there is no migration cost between two HT
siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory
system makes inter-physical-CPU migration pretty cheap: 0.4 msecs.
8-way P3/Xeon [2MB L2 cache]:
---------------------
migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz):
---------------------
[00] [01] [02] [03] [04] [05] [06] [07]
[00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1)
[05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1)
[06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1)
[07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) -
---------------------
cacheflush times [2]: 0.0 (0) 19.2 (19281756)
---------------------
This one has huge caches and a relatively slow memory subsystem - so the
migration cost is 19 msecs.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: <wilder@us.ibm.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
- Move capable() from sched.h to capability.h;
- Use <linux/capability.h> where capable() is used
(in include/, block/, ipc/, kernel/, a few drivers/,
mm/, security/, & sound/;
many more drivers/ to go)
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Uninline capable(). Saves 2K of kernel text on a generic .config, and 1K on a
tiny config. In addition it makes the use of capable more consistent between
CONFIG_SECURITY and !CONFIG_SECURITY
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
prototype
There's no need to guard the normalize_rt_tasks() prototype with an #ifdef
CONFIG_MAGIC_SYSRQ.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
switch itimers to a hrtimers-based implementation
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
mutex implementation - add debugging code.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
|
|
Make it possible for a running process (such as gssapid) to be able to
instantiate a key, as was requested by Trond Myklebust for NFS4.
The patch makes the following changes:
(1) A new, optional key type method has been added. This permits a key type
to intercept requests at the point /sbin/request-key is about to be
spawned and do something else with them - passing them over the
rpc_pipefs files or netlink sockets for instance.
The uninstantiated key, the authorisation key and the intended operation
name are passed to the method.
(2) The callout_info is no longer passed as an argument to /sbin/request-key
to prevent unauthorised viewing of this data using ps or by looking in
/proc/pid/cmdline.
This means that the old /sbin/request-key program will not work with the
patched kernel as it will expect to see an extra argument that is no
longer there.
A revised keyutils package will be made available tomorrow.
(3) The callout_info is now attached to the authorisation key. Reading this
key will retrieve the information.
(4) A new field has been added to the task_struct. This holds the
authorisation key currently active for a thread. Searches now look here
for the caller's set of keys rather than looking for an auth key in the
lowest level of the session keyring.
This permits a thread to be servicing multiple requests at once and to
switch between them. Note that this is per-thread, not per-process, and
so is usable in multithreaded programs.
The setting of this field is inherited across fork and exec.
(5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that
permits a thread to assume the authority to deal with an uninstantiated
key. Assumption is only permitted if the authorisation key associated
with the uninstantiated key is somewhere in the thread's keyrings.
This function can also clear the assumption.
(6) A new magic key specifier has been added to refer to the currently
assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY).
(7) Instantiation will only proceed if the appropriate authorisation key is
assumed first. The assumed authorisation key is discarded if
instantiation is successful.
(8) key_validate() is moved from the file of request_key functions to the
file of permissions functions.
(9) The documentation is updated.
From: <Valdis.Kletnieks@vt.edu>
Build fix.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The latest set of signal-RCU patches does not use get_task_struct_rcu().
Attached is a patch that removes it.
Signed-off-by: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
RCU tasklist_lock and RCU signal handling: send signals RCU-read-locked
instead of tasklist_lock read-locked. This is a scalability improvement on
SMP and a preemption-latency improvement under PREEMPT_RCU.
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: William Irwin <wli@holomorphy.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add PF_SWAPWRITE to control a processes permission to write to swap.
- Use PF_SWAPWRITE in may_write_to_queue() instead of checking for kswapd
and pdflush
- Set PF_SWAPWRITE flag for kswapd and pdflush
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Several counters already have the need to use 64 atomic variables on 64 bit
platforms (see mm_counter_t in sched.h). We have to do ugly ifdefs to fall
back to 32 bit atomic on 32 bit platforms.
The VM statistics patch that I am working on will also make more extensive
use of atomic64.
This patch introduces a new type atomic_long_t by providing definitions in
asm-generic/atomic.h that works similar to the c "long" type. Its 32 bits
on 32 bit platforms and 64 bits on 64 bit platforms.
Also cleans up the determination of the mm_counter_t in sched.h.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
There are some callers in cpufreq hotplug notify path that the lowest
function calls lock_cpu_hotplug(). The lock is already held during
cpu_up() and cpu_down() calls when the notify calls are broadcast to
registered clients.
Ideally if possible, we could disable_preempt() at the highest caller and
make sure we dont sleep in the path down in cpufreq->driver_target() calls
but the calls are so intertwined and cumbersome to cleanup.
Hence we consistently use lock_cpu_hotplug() and unlock_cpu_hotplug() in
all places.
- Removed export of cpucontrol semaphore and made it static.
- removed explicit uses of up/down with lock_cpu_hotplug()
so we can keep track of the the callers in same thread context and
just keep refcounts without calling a down() that causes a deadlock.
- Removed current_in_hotplug() uses
- Removed PF_HOTPLUG_CPU in sched.h introduced for the current_in_hotplug()
temporary workaround.
Tested with insmod of cpufreq_stat.ko, and logical online/offline
to make sure we dont have any hang situations.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Cc: Zwane Mwaikambo <zwane@linuxpower.ca>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Sync iocbs have a life cycle that don't need a kioctx. Their retrying, if
any, is done in the context of their owner who has allocated them on the
stack.
The sole user of a sync iocb's ctx reference was aio_complete() checking for
an elevated iocb ref count that could never happen. No path which grabs an
iocb ref has access to sync iocbs.
If we were to implement sync iocb cancelation it would be done by the owner of
the iocb using its on-stack reference.
Removing this chunk from aio_complete allows us to remove the entire kioctx
instance from mm_struct, reducing its size by a third. On a i386 testing box
the slab size went from 768 to 504 bytes and from 5 to 8 per page.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Acked-by: Benjamin LaHaise <bcrl@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
a) in smp_lock.h #include of sched.h and spinlock.h moved under #ifdef
CONFIG_LOCK_KERNEL.
b) interrupt.h now explicitly pulls sched.h (not via smp_lock.h from
hardirq.h as it used to)
c) in three more places we need changes to compensate for (a) - one place
in arch/sparc needs string.h now, hardirq.h needs forward declaration of
task_struct and preempt.h needs direct include of thread_info.h.
d) thread_info-related helpers in sched.h and thread_info.h put under
ifndef __HAVE_THREAD_FUNCTIONS. Obviously safe.
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
encapsulates the rest of arch-dependent operations with thread_info access.
Two new helpers - setup_thread_stack() and end_of_stack(). For normal case
the former consists of copying thread_info of parent to new thread_info and
the latter returns pointer immediately past the end of thread_info.
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
new helper - task_thread_info(task). On platforms that have thread_info
allocated separately (i.e. in default case) it simply returns
task->thread_info. m68k wants (and for good reasons) to embed its thread_info
into task_struct. So it will (in later patch) have task_thread_info() of its
own. For now we just add a macro for generic case and convert existing
instances of its body in core kernel to uses of new macro. Obviously safe -
all normal architectures get the same preprocessor output they used to get.
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
When calling target drivers to set frequency, we take cpucontrol lock.
When we modified the code to accomodate CPU hotplug, there was an attempt
to take a double lock of cpucontrol leading to a deadlock. Since the
current thread context is already holding the cpucontrol lock, we dont need
to make another attempt to acquire it.
Now we leave a trace in current->flags indicating current thread already is
under cpucontrol lock held, so we dont attempt to do this another time.
Thanks to Andrew Morton for the beating:-)
From: Brice Goglin <Brice.Goglin@ens-lyon.org>
Build fix
(akpm: this patch is still unpleasant. Ashok continues to look for a cleaner
solution, doesn't he? ;))
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch simplifies some checks for magic siginfo values. It should not
change the behaviour in any way.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Simplify the UP (1 CPU) implementatin of set_cpus_allowed.
The one CPU is hardcoded to be cpu 0 - so just test for that bit, and avoid
having to pick up the cpu_online_map.
Also, unexport cpu_online_map: it was only needed for set_cpus_allowed().
Signed-off-by: Paul Jackson <pj@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Overhaul cpuset locking. Replace single semaphore with two semaphores.
The suggestion to use two locks was made by Roman Zippel.
Both locks are global. Code that wants to modify cpusets must first
acquire the exclusive manage_sem, which allows them read-only access to
cpusets, and holds off other would-be modifiers. Before making actual
changes, the second semaphore, callback_sem must be acquired as well. Code
that needs only to query cpusets must acquire callback_sem, which is also a
global exclusive lock.
The earlier problems with double tripping are avoided, because it is
allowed for holders of manage_sem to nest the second callback_sem lock, and
only callback_sem is needed by code called from within __alloc_pages(),
where the double tripping had been possible.
This is not quite the same as a normal read/write semaphore, because
obtaining read-only access with intent to change must hold off other such
attempts, while allowing read-only access w/o such intention. Changing
cpusets involves several related checks and changes, which must be done
while allowing read-only queries (to avoid the double trip), but while
ensuring nothing changes (holding off other would be modifiers.)
This overhaul of cpuset locking also makes careful use of task_lock() to
guard access to the task->cpuset pointer, closing a couple of race
conditions noticed while reading this code (thanks, Roman). I've never
seen these races fail in any use or test.
See further the comments in the code.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
A couple of oddities were guarded by page_table_lock, no longer properly
guarded when that is split.
The mm_counters of file_rss and anon_rss: make those an atomic_t, or an
atomic64_t if the architecture supports it, in such a case. Definitions by
courtesy of Christoph Lameter: who spent considerable effort on more scalable
ways of counting, but found insufficient benefit in practice.
And adding an mm with swap to the mmlist for swapoff: the list is well-
guarded by its own lock, but the list_empty check now has to be repeated
inside it.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Slight and timid rearrangement of mm_struct: hiwater_rss and hiwater_vm were
tacked on the end, but it seems better to keep them near _file_rss, _anon_rss
and total_vm, in the same cacheline on those arches verified.
There are likely to be more profitable rearrangements, but less obvious (is it
good or bad that saved_auxv[AT_VECTOR_SIZE] isolates cpu_vm_mask and context
from many others?), needing serious instrumentation.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
update_mem_hiwater has attracted various criticisms, in particular from those
concerned with mm scalability. Originally it was called whenever rss or
total_vm got raised. Then many of those callsites were replaced by a timer
tick call from account_system_time. Now Frank van Maarseveen reports that to
be found inadequate. How about this? Works for Frank.
Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros
update_hiwater_rss and update_hiwater_vm. Don't attempt to keep
mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually
by 1): those are hot paths. Do the opposite, update only when about to lower
rss (usually by many), or just before final accounting in do_exit. Handle
mm->hiwater_vm in the same way, though it's much less of an issue. Demand
that whoever collects these hiwater statistics do the work of taking the
maximum with rss or total_vm.
And there has been no collector of these hiwater statistics in the tree. The
new convention needs an example, so match Frank's usage by adding a VmPeak
line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS
(High-Water-Mark or High-Water-Memory).
There was a particular anomaly during mremap move, that hiwater_vm might be
captured too high. A fleeting such anomaly remains, but it's quickly
corrected now, whereas before it would stick.
What locking? None: if the app is racy then these statistics will be racy,
it's not worth any overhead to make them exact. But whenever it suits,
hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under
page_table_lock (for now) or with preemption disabled (later on): without
going to any trouble, minimize the time between reading current values and
updating, to minimize those occasions when a racing thread bumps a count up
and back down in between.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
I was lazy when we added anon_rss, and chose to change as few places as
possible. So currently each anonymous page has to be counted twice, in rss
and in anon_rss. Which won't be so good if those are atomic counts in some
configurations.
Change that around: keep file_rss and anon_rss separately, and add them
together (with get_mm_rss macro) when the total is needed - reading two
atomics is much cheaper than updating two atomics. And update anon_rss
upfront, typically in memory.c, not tucked away in page_add_anon_rmap.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
If a process issues an URB from userspace and (starts to) terminate
before the URB comes back, we run into the issue described above. This
is because the urb saves a pointer to "current" when it is posted to the
device, but there's no guarantee that this pointer is still valid
afterwards.
In fact, there are three separate issues:
1) the pointer to "current" can become invalid, since the task could be
completely gone when the URB completion comes back from the device.
2) Even if the saved task pointer is still pointing to a valid task_struct,
task_struct->sighand could have gone meanwhile.
3) Even if the process is perfectly fine, permissions may have changed,
and we can no longer send it a signal.
So what we do instead, is to save the PID and uid's of the process, and
introduce a new kill_proc_info_as_uid() function.
Signed-off-by: Harald Welte <laforge@gnumonks.org>
[ Fixed up types and added symbol exports ]
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Roland points out that the flags end up having non-obvious dependencies
elsewhere, so revert aa55a08687059aa169d10a313c41f238c2070488 and add
some comments about why things are as they are.
We'll just have to fix up the broken comparisons. Roland has a patch.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
do_signal_stop:
for_each_thread(t) {
if (t->state < TASK_STOPPED)
++sig->group_stop_count;
}
However, TASK_NONINTERACTIVE > TASK_STOPPED, so this loop will not
count TASK_INTERRUPTIBLE | TASK_NONINTERACTIVE threads.
See also wait_task_stopped(), which checks ->state > TASK_STOPPED.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
[ We really probably should always use the appropriate bitmasks to test
task states, not do it like this. Using something like
#define TASK_RUNNABLE (TASK_RUNNING | TASK_INTERRUPTIBLE | \
TASK_UNINTERRUPTIBLE | TASK_NONINTERACTIVE)
and then doing "if (task->state & TASK_RUNNABLE)" or similar. But the
ordering of the task states is historical, and keeping the ordering
does make sense regardless. ]
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Explain the mysteries of set_current_state().
Quoth Linus:
The scheduler itself never needs the memory barrier at all.
The barrier is needed only if the user itself ends up testing some other
thing afterwards, ie if you have
set_process_state(TASK_INTERRUPTIBLE);
if (still_need_to_sleep())
schedule();
then the "still_need_to_sleep()" thing may test flags and wakeup events,
and then you _may_ want to (and often do) make sure that the write of
TASK_INTERRUPTIBLE is serialized wrt the reads of any wakeup data (since
the wakeup may have happened on another CPU).
So the comment is somewhat wrong. We don't really _care_ whether the state
propagates out to other CPU's since all of our actions are purely local,
and there is nothing we do that is conditional on any other CPU: we're
going to sleep unconditionally, and the scheduler only cares about _our_
state, not about somebody elses state.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Optimize the deadlock avoidance check on the global cpuset
semaphore cpuset_sem. Instead of adding a depth counter to the
task struct of each task, rather just two words are enough, one
to store the depth and the other the current cpuset_sem holder.
Thanks to Nikita Danilov for the idea.
Signed-off-by: Paul Jackson <pj@sgi.com>
[ We may want to change this further, but at least it's now
a totally internal decision to the cpusets code ]
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Scheduler hooks to see/change which process is deemed to be on a cpu.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Add schedule_timeout_{,un}interruptible() interfaces so that
schedule_timeout() callers don't have to worry about forgetting to add the
set_current_state() call beforehand.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch implements a task state bit (TASK_NONINTERACTIVE), which can be
used by blocking points to mark the task's wait as "non-interactive". This
does not mean the task will be considered a CPU-hog - the wait will simply
not have an effect on the waiting task's priority - positive or negative
alike. Right now only pipe_wait() will make use of it, because it's a
common source of not-so-interactive waits (kernel compilation jobs, etc.).
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The cpusets-formalize-intermediate-gfp_kernel-containment patch
has a deadlock problem.
This patch was part of a set of four patches to make more
extensive use of the cpuset 'mem_exclusive' attribute to
manage kernel GFP_KERNEL memory allocations and to constrain
the out-of-memory (oom) killer.
A task that is changing cpusets in particular ways on a system
when it is very short of free memory could double trip over
the global cpuset_sem semaphore (get the lock and then deadlock
trying to get it again).
The second attempt to get cpuset_sem would be in the routine
cpuset_zone_allowed(). This was discovered by code inspection.
I can not reproduce the problem except with an artifically
hacked kernel and a specialized stress test.
In real life you cannot hit this unless you are manipulating
cpusets, and are very unlikely to hit it unless you are rapidly
modifying cpusets on a memory tight system. Even then it would
be a rare occurence.
If you did hit it, the task double tripping over cpuset_sem
would deadlock in the kernel, and any other task also trying
to manipulate cpusets would deadlock there too, on cpuset_sem.
Your batch manager would be wedged solid (if it was cpuset
savvy), but classic Unix shells and utilities would work well
enough to reboot the system.
The unusual condition that led to this bug is that unlike most
semaphores, cpuset_sem _can_ be acquired while in the page
allocation code, when __alloc_pages() calls cpuset_zone_allowed.
So it easy to mistakenly perform the following sequence:
1) task makes system call to alter a cpuset
2) take cpuset_sem
3) try to allocate memory
4) memory allocator, via cpuset_zone_allowed, trys to take cpuset_sem
5) deadlock
The reason that this is not a serious bug for most users
is that almost all calls to allocate memory don't require
taking cpuset_sem. Only some code paths off the beaten
track require taking cpuset_sem -- which is good. Taking
a global semaphore on the main code path for allocating
memory would not scale well.
This patch fixes this deadlock by wrapping the up() and down()
calls on cpuset_sem in kernel/cpuset.c with code that tracks
the nesting depth of the current task on that semaphore, and
only does the real down() if the task doesn't hold the lock
already, and only does the real up() if the nesting depth
(number of unmatched downs) is exactly one.
The previous required use of refresh_mems(), anytime that
the cpuset_sem semaphore was acquired and the code executed
while holding that semaphore might try to allocate memory, is
no longer required. Two refresh_mems() calls were removed
thanks to this. This is a good change, as failing to get
all the necessary refresh_mems() calls placed was a primary
source of bugs in this cpuset code. The only remaining call
to refresh_mems() is made while doing a memory allocation,
if certain task memory placement data needs to be updated
from its cpuset, due to the cpuset having been changed behind
the tasks back.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
For architecture like ia64, the switch stack structure is fairly large
(currently 528 bytes). For context switch intensive application, we found
that significant amount of cache misses occurs in switch_to() function.
The following patch adds a hook in the schedule() function to prefetch
switch stack structure as soon as 'next' task is determined. This allows
maximum overlap in prefetch cache lines for that structure.
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The size of auxiliary vector is fixed at 42 in linux/sched.h. But it isn't
very obvious when looking at linux/elf.h. This patch adds AT_VECTOR_SIZE
so that we can change it if necessary when a new vector is added.
Because of include file ordering problems, doing this necessitated the
extraction of the AT_* symbols into a standalone header file.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch adds a new kernel debug feature: CONFIG_DETECT_SOFTLOCKUP.
When enabled then per-CPU watchdog threads are started, which try to run
once per second. If they get delayed for more than 10 seconds then a
callback from the timer interrupt detects this condition and prints out a
warning message and a stack dump (once per lockup incident). The feature
is otherwise non-intrusive, it doesnt try to unlock the box in any way, it
only gets the debug info out, automatically, and on all CPUs affected by
the lockup.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-Off-By: Matthias Urlichs <smurf@smurf.noris.de>
Signed-off-by: Richard Purdie <rpurdie@rpsys.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|