aboutsummaryrefslogtreecommitdiff
path: root/include/linux/sched.h
AgeCommit message (Collapse)Author
2009-02-06MERGE-via-pending-tracking-hist-MERGE-via-stable-tracking-MERGE-via-mokopatc ↵merge
hes-tracking-MERGE-via-master-MERGE-via-master-hist-1232625318-1233879011-1233879414-1233879505 pending-tracking-hist top was MERGE-via-stable-tracking-MERGE-via-mokopatches-tracking-MERGE-via-master-MERGE-via-master-hist-1232625318-1233879011-1233879414-1233879505 / 1c405b6ccee468298e7ccbfd9a3a3f4d123207b0 ... parent commitmessage: From: merge <null@invalid> MERGE-via-stable-tracking-hist-MERGE-via-mokopatches-tracking-MERGE-via-master-MERGE-via-master-hist-1232625318-1233879011-1233879414 stable-tracking-hist top was MERGE-via-mokopatches-tracking-MERGE-via-master-MERGE-via-master-hist-1232625318-1233879011-1233879414 / 71be0a45396066b1f8f27f8f4f87937247a129e1 ... parent commitmessage: From: merge <null@invalid> MERGE-via-mokopatches-tracking-hist-MERGE-via-master-MERGE-via-master-hist-1232625318-1233879011 mokopatches-tracking-hist top was MERGE-via-master-MERGE-via-master-hist-1232625318-1233879011 / 1be1b01373f572a02c6f1f99863c8c11ed2f9f5b ... parent commitmessage: From: merge <null@invalid> MERGE-via-master-MERGE-via-master-hist-1232625318 master top was MERGE-via-master-hist-1232625318 / dd4b117123ae66451695810017eb72fbdfc05df5 ... parent commitmessage: From: merge <null@invalid> MERGE-master-patchset-edits
2009-01-22MERGE-via-pending-tracking-hist-MERGE-via-stable-tracking-MERGE-via-mokopatc ↵merge
hes-tracking-fix-stray-endmenu-patch-1232632040-1232632141 pending-tracking-hist top was MERGE-via-stable-tracking-MERGE-via-mokopatches-tracking-fix-stray-endmenu-patch-1232632040-1232632141 / fdf777a63bcb59e0dfd78bfe2c6242e01f6d4eb9 ... parent commitmessage: From: merge <null@invalid> MERGE-via-stable-tracking-hist-MERGE-via-mokopatches-tracking-fix-stray-endmenu-patch-1232632040 stable-tracking-hist top was MERGE-via-mokopatches-tracking-fix-stray-endmenu-patch-1232632040 / 90463bfd2d5a3c8b52f6e6d71024a00e052b0ced ... parent commitmessage: From: merge <null@invalid> MERGE-via-mokopatches-tracking-hist-fix-stray-endmenu-patch mokopatches-tracking-hist top was fix-stray-endmenu-patch / 3630e0be570de8057e7f8d2fe501ed353cdf34e6 ... parent commitmessage: From: Andy Green <andy@openmoko.com> fix-stray-endmenu.patch Signed-off-by: Andy Green <andy@openmoko.com>
2008-11-06net: Fix recursive descent in __scm_destroy().David Miller
__scm_destroy() walks the list of file descriptors in the scm_fp_list pointed to by the scm_cookie argument. Those, in turn, can close sockets and invoke __scm_destroy() again. There is nothing which limits how deeply this can occur. The idea for how to fix this is from Linus. Basically, we do all of the fput()s at the top level by collecting all of the scm_fp_list objects hit by an fput(). Inside of the initial __scm_destroy() we keep running the list until it is empty. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-24Merge commit 'v2.6.28-rc1' into sched/urgentIngo Molnar
2008-10-23Merge branch 'proc' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/adobriyan/proc * 'proc' of git://git.kernel.org/pub/scm/linux/kernel/git/adobriyan/proc: (35 commits) proc: remove fs/proc/proc_misc.c proc: move /proc/vmcore creation to fs/proc/vmcore.c proc: move pagecount stuff to fs/proc/page.c proc: move all /proc/kcore stuff to fs/proc/kcore.c proc: move /proc/schedstat boilerplate to kernel/sched_stats.h proc: move /proc/modules boilerplate to kernel/module.c proc: move /proc/diskstats boilerplate to block/genhd.c proc: move /proc/zoneinfo boilerplate to mm/vmstat.c proc: move /proc/vmstat boilerplate to mm/vmstat.c proc: move /proc/pagetypeinfo boilerplate to mm/vmstat.c proc: move /proc/buddyinfo boilerplate to mm/vmstat.c proc: move /proc/vmallocinfo to mm/vmalloc.c proc: move /proc/slabinfo boilerplate to mm/slub.c, mm/slab.c proc: move /proc/slab_allocators boilerplate to mm/slab.c proc: move /proc/interrupts boilerplate code to fs/proc/interrupts.c proc: move /proc/stat to fs/proc/stat.c proc: move rest of /proc/partitions code to block/genhd.c proc: move /proc/cpuinfo code to fs/proc/cpuinfo.c proc: move /proc/devices code to fs/proc/devices.c proc: move rest of /proc/locks to fs/locks.c ...
2008-10-23Merge branch 'v28-range-hrtimers-for-linus-v2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'v28-range-hrtimers-for-linus-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (37 commits) hrtimers: add missing docbook comments to struct hrtimer hrtimers: simplify hrtimer_peek_ahead_timers() hrtimers: fix docbook comments DECLARE_PER_CPU needs linux/percpu.h hrtimers: fix typo rangetimers: fix the bug reported by Ingo for real rangetimer: fix BUG_ON reported by Ingo rangetimer: fix x86 build failure for the !HRTIMERS case select: fix alpha OSF wrapper select: fix alpha OSF wrapper hrtimer: peek at the timer queue just before going idle hrtimer: make the futex() system call use the per process slack value hrtimer: make the nanosleep() syscall use the per process slack hrtimer: fix signed/unsigned bug in slack estimator hrtimer: show the timer ranges in /proc/timer_list hrtimer: incorporate feedback from Peter Zijlstra hrtimer: add a hrtimer_start_range() function hrtimer: another build fix hrtimer: fix build bug found by Ingo hrtimer: make select() and poll() use the hrtimer range feature ...
2008-10-23Merge branch 'sched-fixes-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: sched: disable the hrtick for now sched: revert back to per-rq vruntime sched: fair scheduler should not resched rt tasks sched: optimize group load balancer sched: minor fast-path overhead reduction sched: fix the wrong mask_len, cleanup sched: kill unused scheduler decl. sched: fix the wrong mask_len sched: only update rq->clock while holding rq->lock
2008-10-23proc: move /proc/schedstat boilerplate to kernel/sched_stats.hAlexey Dobriyan
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
2008-10-22sched: add CONFIG_SMP consistencyLi Zefan
a patch from Henrik Austad did this: >> Do not declare select_task_rq as part of sched_class when CONFIG_SMP is >> not set. Peter observed: > While a proper cleanup, could you do it by re-arranging the methods so > as to not create an additional ifdef? Do not declare select_task_rq and some other methods as part of sched_class when CONFIG_SMP is not set. Also gather those methods to avoid CONFIG_SMP mess. Idea-by: Henrik Austad <henrik.austad@gmail.com> Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Henrik Austad <henrik@austad.us> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-22Merge branch 'timers/range-hrtimers' into v28-range-hrtimers-for-linus-v2Thomas Gleixner
Conflicts: kernel/time/tick-sched.c Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-10-20Merge branch 'v28-timers-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'v28-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (36 commits) fix documentation of sysrq-q really Fix documentation of sysrq-q timer_list: add base address to clock base timer_list: print cpu number of clockevents device timer_list: print real timer address NOHZ: restart tick device from irq_enter() NOHZ: split tick_nohz_restart_sched_tick() NOHZ: unify the nohz function calls in irq_enter() timers: fix itimer/many thread hang, fix timers: fix itimer/many thread hang, v3 ntp: improve adjtimex frequency rounding timekeeping: fix rounding problem during clock update ntp: let update_persistent_clock() sleep hrtimer: reorder struct hrtimer to save 8 bytes on 64bit builds posix-timers: lock_timer: make it readable posix-timers: lock_timer: kill the bogus ->it_id check posix-timers: kill ->it_sigev_signo and ->it_sigev_value posix-timers: sys_timer_create: cleanup the error handling posix-timers: move the initialization of timer->sigq from send to create path posix-timers: sys_timer_create: simplify and s/tasklist/rcu/ ... Fix trivial conflicts due to sysrq-q description clahes in Documentation/sysrq.txt and drivers/char/sysrq.c
2008-10-20add CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERSRoland McGrath
This adds a kconfig option to change the /proc/PID/coredump_filter default. Fedora has been carrying a trivial patch to change the hard-wired value for this default, since Fedora 8. The default default can't change safely because there are old GDB versions out there (all before 6.7) that are confused by the core dump files created by the MMF_DUMP_ELF_HEADERS setting. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Andi Kleen <andi@firstfloor.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Kawai Hidehiro <hidehiro.kawai.ez@hitachi.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Jones <davej@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20coredump_filter: add hugepage dumpingKOSAKI Motohiro
Presently hugepage's vma has a VM_RESERVED flag in order not to be swapped. But a VM_RESERVED vma isn't core dumped because this flag is often used for some kernel vmas (e.g. vmalloc, sound related). Thus hugepages are never dumped and it can't be debugged easily. Many developers want hugepages to be included into core-dump. However, We can't read generic VM_RESERVED area because this area is often IO mapping area. then these area reading may change device state. it is definitly undesiable side-effect. So adding a hugepage specific bit to the coredump filter is better. It will be able to hugepage core dumping and doesn't cause any side-effect to any i/o devices. In additional, libhugetlb use hugetlb private mapping pages as anonymous page. Then, hugepage private mapping pages should be core dumped by default. Then, /proc/[pid]/core_dump_filter has two new bits. - bit 5 mean hugetlb private mapping pages are dumped or not. (default: yes) - bit 6 mean hugetlb shared mapping pages are dumped or not. (default: no) I tested by following method. % ulimit -c unlimited % ./crash_hugepage 50 % ./crash_hugepage 50 -p % ls -lh % gdb ./crash_hugepage core % % echo 0x43 > /proc/self/coredump_filter % ./crash_hugepage 50 % ./crash_hugepage 50 -p % ls -lh % gdb ./crash_hugepage core #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <sys/mman.h> #include <string.h> #include "hugetlbfs.h" int main(int argc, char** argv){ char* p; int ch; int mmap_flags = MAP_SHARED; int fd; int nr_pages; while((ch = getopt(argc, argv, "p")) != -1) { switch (ch) { case 'p': mmap_flags &= ~MAP_SHARED; mmap_flags |= MAP_PRIVATE; break; default: /* nothing*/ break; } } argc -= optind; argv += optind; if (argc == 0){ printf("need # of pages\n"); exit(1); } nr_pages = atoi(argv[0]); if (nr_pages < 2) { printf("nr_pages must >2\n"); exit(1); } fd = hugetlbfs_unlinked_fd(); p = mmap(NULL, nr_pages * gethugepagesize(), PROT_READ|PROT_WRITE, mmap_flags, fd, 0); sleep(2); *(p + gethugepagesize()) = 1; /* COW */ sleep(2); /* crash! */ *(int*)0 = 1; return 0; } Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Kawai Hidehiro <hidehiro.kawai.ez@hitachi.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: William Irwin <wli@holomorphy.com> Cc: Adam Litke <agl@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20sched: optimize group load balancerPeter Zijlstra
I noticed that tg_shares_up() unconditionally takes rq-locks for all cpus in the sched_domain. This hurts. We need the rq-locks whenever we change the weight of the per-cpu group sched entities. To allevate this a little, only change the weight when the new weight is at least shares_thresh away from the old value. This avoids the rq-lock for the top level entries, since those will never be re-weighted, and fuzzes the lower level entries a little to gain performance in semi-stable situations. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-20Merge branches 'timers/clocksource', 'timers/hrtimers', 'timers/nohz', ↵Thomas Gleixner
'timers/ntp', 'timers/posixtimers' and 'timers/debug' into v28-timers-for-linus
2008-10-17Merge commit 'linus/master' into merge-linusArjan van de Ven
Conflicts: arch/x86/kvm/i8254.c
2008-10-17sched: kill unused scheduler decl.David Miller
I noticed this while making investigations into the tbench regressions. Please apply. sched: Remove hrtick_resched() extern decl. This function was removed by 31656519e132f6612584815f128c83976a9aaaef ("sched, x86: clean up hrtick implementation"). Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-10-12Merge branch 'linus' into x86/xenIngo Molnar
Conflicts: arch/x86/kernel/cpu/common.c arch/x86/kernel/process_64.c arch/x86/xen/enlighten.c
2008-10-09sched debug: add name to sched_domain sysctl entriesIngo Molnar
add /proc/sys/kernel/sched_domain/cpu0/domain0/name, to make it easier to see which specific scheduler domain remained at that entry. Since we process the scheduler domain tree and simplify it, it's not always immediately clear during debugging which domain came from where. depends on CONFIG_SCHED_DEBUG=y. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-27timers: fix itimer/many thread hang, v3Frank Mayhar
- fix UP lockup - another set of UP/SMP cleanups and simplifications Signed-off-by: Frank Mayhar <fmayhar@google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-23timers: fix itimer/many thread hang, v2Frank Mayhar
This is the second resubmission of the posix timer rework patch, posted a few days ago. This includes the changes from the previous resubmittion, which addressed Oleg Nesterov's comments, removing the RCU stuff from the patch and un-inlining the thread_group_cputime() function for SMP. In addition, per Ingo Molnar it simplifies the UP code, consolidating much of it with the SMP version and depending on lower-level SMP/UP handling to take care of the differences. It also cleans up some UP compile errors, moves the scheduler stats-related macros into kernel/sched_stats.h, cleans up a merge error in kernel/fork.c and has a few other minor fixes and cleanups as suggested by Oleg and Ingo. Thanks for the review, guys. Signed-off-by: Frank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-22sched: wakeup preempt when small overlapPeter Zijlstra
Lin Ming reported a 10% OLTP regression against 2.6.27-rc4. The difference seems to come from different preemption agressiveness, which affects the cache footprint of the workload and its effective cache trashing. Aggresively preempt a task if its avg overlap is very small, this should avoid the task going to sleep and find it still running when we schedule back to it - saving a wakeup. Reported-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-14timers: fix itimer/many thread hang, cleanupsIngo Molnar
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-14timers: fix itimer/many thread hang, fix #2Ingo Molnar
fix the UP build: In file included from arch/x86/kernel/asm-offsets_32.c:9, from arch/x86/kernel/asm-offsets.c:3: include/linux/sched.h: In function ‘thread_group_cputime_clone_thread’: include/linux/sched.h:2272: warning: no return statement in function returning non-void include/linux/sched.h: In function ‘thread_group_cputime_account_user’: include/linux/sched.h:2284: error: invalid type argument of ‘->’ (have ‘struct task_cputime’) include/linux/sched.h:2284: error: invalid type argument of ‘->’ (have ‘struct task_cputime’) include/linux/sched.h: In function ‘thread_group_cputime_account_system’: include/linux/sched.h:2291: error: invalid type argument of ‘->’ (have ‘struct task_cputime’) include/linux/sched.h:2291: error: invalid type argument of ‘->’ (have ‘struct task_cputime’) include/linux/sched.h: In function ‘thread_group_cputime_account_exec_runtime’: include/linux/sched.h:2298: error: invalid type argument of ‘->’ (have ‘struct task_cputime’) distcc[14501] ERROR: compile arch/x86/kernel/asm-offsets.c on a/30 failed make[1]: *** [arch/x86/kernel/asm-offsets.s] Error 1 Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-14timers: fix itimer/many thread hangFrank Mayhar
Overview This patch reworks the handling of POSIX CPU timers, including the ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together with the help of Roland McGrath, the owner and original writer of this code. The problem we ran into, and the reason for this rework, has to do with using a profiling timer in a process with a large number of threads. It appears that the performance of the old implementation of run_posix_cpu_timers() was at least O(n*3) (where "n" is the number of threads in a process) or worse. Everything is fine with an increasing number of threads until the time taken for that routine to run becomes the same as or greater than the tick time, at which point things degrade rather quickly. This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF." Code Changes This rework corrects the implementation of run_posix_cpu_timers() to make it run in constant time for a particular machine. (Performance may vary between one machine and another depending upon whether the kernel is built as single- or multiprocessor and, in the latter case, depending upon the number of running processors.) To do this, at each tick we now update fields in signal_struct as well as task_struct. The run_posix_cpu_timers() function uses those fields to make its decisions. We define a new structure, "task_cputime," to contain user, system and scheduler times and use these in appropriate places: struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; This is included in the structure "thread_group_cputime," which is a new substructure of signal_struct and which varies for uniprocessor versus multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as a simple substructure, while for multiprocessor kernels it is a pointer: struct thread_group_cputime { struct task_cputime totals; }; struct thread_group_cputime { struct task_cputime *totals; }; We also add a new task_cputime substructure directly to signal_struct, to cache the earliest expiration of process-wide timers, and task_cputime also replaces the it_*_expires fields of task_struct (used for earliest expiration of thread timers). The "thread_group_cputime" structure contains process-wide timers that are updated via account_user_time() and friends. In the non-SMP case the structure is a simple aggregator; unfortunately in the SMP case that simplicity was not achievable due to cache-line contention between CPUs (in one measured case performance was actually _worse_ on a 16-cpu system than the same test on a 4-cpu system, due to this contention). For SMP, the thread_group_cputime counters are maintained as a per-cpu structure allocated using alloc_percpu(). The timer functions update only the timer field in the structure corresponding to the running CPU, obtained using per_cpu_ptr(). We define a set of inline functions in sched.h that we use to maintain the thread_group_cputime structure and hide the differences between UP and SMP implementations from the rest of the kernel. The thread_group_cputime_init() function initializes the thread_group_cputime structure for the given task. The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the out-of-line function thread_group_cputime_alloc_smp() to allocate and fill in the per-cpu structures and fields. The thread_group_cputime_free() function, also a no-op for UP, in SMP frees the per-cpu structures. The thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls thread_group_cputime_alloc() if the per-cpu structures haven't yet been allocated. The thread_group_cputime() function fills the task_cputime structure it is passed with the contents of the thread_group_cputime fields; in UP it's that simple but in SMP it must also safely check that tsk->signal is non-NULL (if it is it just uses the appropriate fields of task_struct) and, if so, sums the per-cpu values for each online CPU. Finally, the three functions account_group_user_time(), account_group_system_time() and account_group_exec_runtime() are used by timer functions to update the respective fields of the thread_group_cputime structure. Non-SMP operation is trivial and will not be mentioned further. The per-cpu structure is always allocated when a task creates its first new thread, via a call to thread_group_cputime_clone_thread() from copy_signal(). It is freed at process exit via a call to thread_group_cputime_free() from cleanup_signal(). All functions that formerly summed utime/stime/sum_sched_runtime values from from all threads in the thread group now use thread_group_cputime() to snapshot the values in the thread_group_cputime structure or the values in the task structure itself if the per-cpu structure hasn't been allocated. Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit. The run_posix_cpu_timers() function has been split into a fast path and a slow path; the former safely checks whether there are any expired thread timers and, if not, just returns, while the slow path does the heavy lifting. With the dedicated thread group fields, timers are no longer "rebalanced" and the process_timer_rebalance() function and related code has gone away. All summing loops are gone and all code that used them now uses the thread_group_cputime() inline. When process-wide timers are set, the new task_cputime structure in signal_struct is used to cache the earliest expiration; this is checked in the fast path. Performance The fix appears not to add significant overhead to existing operations. It generally performs the same as the current code except in two cases, one in which it performs slightly worse (Case 5 below) and one in which it performs very significantly better (Case 2 below). Overall it's a wash except in those two cases. I've since done somewhat more involved testing on a dual-core Opteron system. Case 1: With no itimer running, for a test with 100,000 threads, the fixed kernel took 1428.5 seconds, 513 seconds more than the unfixed system, all of which was spent in the system. There were twice as many voluntary context switches with the fix as without it. Case 2: With an itimer running at .01 second ticks and 4000 threads (the most an unmodified kernel can handle), the fixed kernel ran the test in eight percent of the time (5.8 seconds as opposed to 70 seconds) and had better tick accuracy (.012 seconds per tick as opposed to .023 seconds per tick). Case 3: A 4000-thread test with an initial timer tick of .01 second and an interval of 10,000 seconds (i.e. a timer that ticks only once) had very nearly the same performance in both cases: 6.3 seconds elapsed for the fixed kernel versus 5.5 seconds for the unfixed kernel. With fewer threads (eight in these tests), the Case 1 test ran in essentially the same time on both the modified and unmodified kernels (5.2 seconds versus 5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds versus 5.4 seconds but again with much better tick accuracy, .013 seconds per tick versus .025 seconds per tick for the unmodified kernel. Since the fix affected the rlimit code, I also tested soft and hard CPU limits. Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer running), the modified kernel was very slightly favored in that while it killed the process in 19.997 seconds of CPU time (5.002 seconds of wall time), only .003 seconds of that was system time, the rest was user time. The unmodified kernel killed the process in 20.001 seconds of CPU (5.014 seconds of wall time) of which .016 seconds was system time. Really, though, the results were too close to call. The results were essentially the same with no itimer running. Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds (where the hard limit would never be reached) and an itimer running, the modified kernel exhibited worse tick accuracy than the unmodified kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise, performance was almost indistinguishable. With no itimer running this test exhibited virtually identical behavior and times in both cases. In times past I did some limited performance testing. those results are below. On a four-cpu Opteron system without this fix, a sixteen-thread test executed in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On the same system with the fix, user and elapsed time were about the same, but system time dropped to 0.007 seconds. Performance with eight, four and one thread were comparable. Interestingly, the timer ticks with the fix seemed more accurate: The sixteen-thread test with the fix received 149543 ticks for 0.024 seconds per tick, while the same test without the fix received 58720 for 0.061 seconds per tick. Both cases were configured for an interval of 0.01 seconds. Again, the other tests were comparable. Each thread in this test computed the primes up to 25,000,000. I also did a test with a large number of threads, 100,000 threads, which is impossible without the fix. In this case each thread computed the primes only up to 10,000 (to make the runtime manageable). System time dominated, at 1546.968 seconds out of a total 2176.906 seconds (giving a user time of 629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite accurate. There is obviously no comparable test without the fix. Signed-off-by: Frank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-10mm: define USE_SPLIT_PTLOCKS rather than repeating expressionJeremy Fitzhardinge
Define USE_SPLIT_PTLOCKS as a constant expression rather than repeating "NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS" all over the place. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-06Merge branch 'linus' into sched/develIngo Molnar
2008-09-05hrtimer: create a "timer_slack" field in the task structArjan van de Ven
We want to be able to control the default "rounding" that is used by select() and poll() and friends. This is a per process property (so that we can have a "nice" like program to start certain programs with a looser or stricter rounding) that can be set/get via a prctl(). For this purpose, a field called "timer_slack_ns" is added to the task struct. In addition, a field called "default_timer_slack"ns" is added so that tasks easily can temporarily to a more/less accurate slack and then back to the default. The default value of the slack is set to 50 usec; this is significantly less than 2.6.27's average select() and poll() timing error but still allows the kernel to group timers somewhat to preserve power behavior. Applications and admins can override this via the prctl() Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
2008-09-05sched: fix process time monotonicityBalbir Singh
Spencer reported a problem where utime and stime were going negative despite the fixes in commit b27f03d4bdc145a09fb7b0c0e004b29f1ee555fa. The suspected reason for the problem is that signal_struct maintains it's own utime and stime (of exited tasks), these are not updated using the new task_utime() routine, hence sig->utime can go backwards and cause the same problem to occur (sig->utime, adds tsk->utime and not task_utime()). This patch fixes the problem TODO: using max(task->prev_utime, derived utime) works for now, but a more generic solution is to implement cputime_max() and use the cputime_gt() function for comparison. Reported-by: spencer@bluehost.com Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-15sched: reorder struct sched_rt_entity to remove padding on 64 bit buildsRichard Kennedy
remove 8 bytes of padding on 64 bit builds (also removes 8 bytes from task_struct) Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-15sched: reorder signal_struct to remove 8 bytes on 64 bit buildsRichard Kennedy
reorder structure to remove 8 bytes of padding on 64 bit builds Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-14CRED: Introduce credential access wrappersDavid Howells
The patches that are intended to introduce copy-on-write credentials for 2.6.28 require abstraction of access to some fields of the task structure, particularly for the case of one task accessing another's credentials where RCU will have to be observed. Introduced here are trivial no-op versions of the desired accessors for current and other tasks so that other subsystems can start to be converted over more easily. Wrappers are introduced into a new header (linux/cred.h) for UID/GID, EUID/EGID, SUID/SGID, FSUID/FSGID, cap_effective and current's subscribed user_struct. These wrappers are macros because the ordering between header files mitigates against making them inline functions. linux/cred.h is #included from linux/sched.h. Further, XFS is modified such that it no longer defines and uses parameterised versions of current_fs[ug]id(), thus getting rid of the namespace collision otherwise incurred. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-11sched_clock: delay using sched_clock()Peter Zijlstra
Some arch's can't handle sched_clock() being called too early - delay this until sched_clock_init() has been called. Reported-by: Bill Gatliff <bgat@billgatliff.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Nishanth Aravamudan <nacc@us.ibm.com> CC: Russell King - ARM Linux <linux@arm.linux.org.uk> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-31sched clock: revert various sched_clock() changesIngo Molnar
Found an interactivity problem on a quad core test-system - simple CPU loops would occasionally delay the system un an unacceptable way. After much debugging with Peter Zijlstra it turned out that the problem is caused by the string of sched_clock() changes - they caused the CPU clock to jump backwards a bit - which confuses the scheduler arithmetics. (which is unsigned for performance reasons) So revert: # c300ba2: sched_clock: and multiplier for TSC to gtod drift # c0c8773: sched_clock: only update deltas with local reads. # af52a90: sched_clock: stop maximum check on NO HZ # f7cce27: sched_clock: widen the max and min time This solves the interactivity problems. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Mike Galbraith <efault@gmx.de>
2008-07-27task IO accounting: move all IO statistics in struct task_io_accountingAndrea Righi
Simplify the code of include/linux/task_io_accounting.h. It is also more reasonable to have all the task i/o-related statistics in a single struct (task_io_accounting). Signed-off-by: Andrea Righi <righi.andrea@gmail.com> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-27task IO accounting: improve code readabilityAndrea Righi
Put all i/o statistics in struct proc_io_accounting and use inline functions to initialize and increment statistics, removing a lot of single variable assignments. This also reduces the kernel size as following (with CONFIG_TASK_XACCT=y and CONFIG_TASK_IO_ACCOUNTING=y). text data bss dec hex filename 11651 0 0 11651 2d83 kernel/exit.o.before 11619 0 0 11619 2d63 kernel/exit.o.after 10886 132 136 11154 2b92 kernel/fork.o.before 10758 132 136 11026 2b12 kernel/fork.o.after 3082029 807968 4818600 8708597 84e1f5 vmlinux.o.before 3081869 807968 4818600 8708437 84e155 vmlinux.o.after Signed-off-by: Andrea Righi <righi.andrea@gmail.com> Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26tracehook: wait_task_inactiveRoland McGrath
This extends wait_task_inactive() with a new argument so it can be used in a "soft" mode where it will check for the task changing state unexpectedly and back off. There is no change to existing callers. This lays the groundwork to allow robust, noninvasive tracing that can try to sample a blocked thread but back off safely if it wakes up. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26tracehook: deathRoland McGrath
This moves the ptrace logic in task death (exit_notify) into tracehook.h inlines. Some code is rearranged slightly to make things nicer. There is no change, only cleanup. There is one hook called with the tasklist_lock write-locked, as ptrace needs. There is also a new hook called after exit_state changes and without locks. This is a better place for tracing work to be in the future, since it doesn't delay the whole system with locking. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26Full conversion to early_initcall() interface, remove old interfaceEduard - Gabriel Munteanu
A previous patch added the early_initcall(), to allow a cleaner hooking of pre-SMP initcalls. Now we remove the older interface, converting all existing users to the new one. [akpm@linux-foundation.org: cleanups] [akpm@linux-foundation.org: build fix] [kosaki.motohiro@jp.fujitsu.com: warning fix] [kosaki.motohiro@jp.fujitsu.com: warning fix] Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26uninline arch_pick_mmap_layout()Andrew Morton
Fix this, on avr32: include/linux/utsname.h:35, from init/main.c:20: include/linux/sched.h: In function 'arch_pick_mmap_layout': include/linux/sched.h:2149: error: implicit declaration of function 'PAGE_ALIGN' Reported-by: Adrian Bunk <bunk@kernel.org> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25per-task-delay-accounting: add memory reclaim delayKeika Kobayashi
Sometimes, application responses become bad under heavy memory load. Applications take a bit time to reclaim memory. The statistics, how long memory reclaim takes, will be useful to measure memory usage. This patch adds accounting memory reclaim to per-task-delay-accounting for accounting the time of do_try_to_free_pages(). <i.e> - When System is under low memory load, memory reclaim may not occur. $ free total used free shared buffers cached Mem: 8197800 1577300 6620500 0 4808 1516724 -/+ buffers/cache: 55768 8142032 Swap: 16386292 0 16386292 $ vmstat 1 procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 0 0 5069748 10612 3014060 0 0 0 0 3 26 0 0 100 0 0 0 0 5069748 10612 3014060 0 0 0 0 4 22 0 0 100 0 0 0 0 5069748 10612 3014060 0 0 0 0 3 18 0 0 100 0 Measure the time of tar command. $ ls -s test.dat 1501472 test.dat $ time tar cvf test.tar test.dat real 0m13.388s user 0m0.116s sys 0m5.304s $ ./delayget -d -p <pid> CPU count real total virtual total delay total 428 5528345500 5477116080 62749891 IO count delay total 338 8078977189 SWAP count delay total 0 0 RECLAIM count delay total 0 0 - When system is under heavy memory load memory reclaim may occur. $ vmstat 1 procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 0 7159032 49724 1812 3012 0 0 0 0 3 24 0 0 100 0 0 0 7159032 49724 1812 3012 0 0 0 0 4 24 0 0 100 0 0 0 7159032 49848 1812 3012 0 0 0 0 3 22 0 0 100 0 In this case, one process uses more 8G memory by execution of malloc() and memset(). $ time tar cvf test.tar test.dat real 1m38.563s <- increased by 85 sec user 0m0.140s sys 0m7.060s $ ./delayget -d -p <pid> CPU count real total virtual total delay total 9021 7140446250 7315277975 923201824 IO count delay total 8965 90466349669 SWAP count delay total 3 21036367 RECLAIM count delay total 740 61011951153 In the later case, the value of RECLAIM is increasing. So, taskstats can show how much memory reclaim influences TAT. Signed-off-by: Keika Kobayashi <kobayashi.kk@ncos.nec.co.jp> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujistu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25task IO accounting: provide distinct tgid/tid I/O statisticsAndrea Righi
Report per-thread I/O statistics in /proc/pid/task/tid/io and aggregate parent I/O statistics in /proc/pid/io. This approach follows the same model used to account per-process and per-thread CPU times. As a practial application, this allows for example to quickly find the top I/O consumer when a process spawns many child threads that perform the actual I/O work, because the aggregated I/O statistics can always be found in /proc/pid/io. [ Oleg Nesterov points out that we should check that the task is still alive before we iterate over the threads, but also says that we can do that fixup on top of this later. - Linus ] Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Andrea Righi <righi.andrea@gmail.com> Cc: Matt Heaton <matt@hostmonster.com> Cc: Shailabh Nagar <nagar@watson.ibm.com> Acked-by-with-comments: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25accounting: account for user time when updating memory integralsJonathan Lim
Adapt acct_update_integrals() to include user time when calculating the time difference. The units of acct_rss_mem1 and acct_vm_mem1 are also changed from pages-jiffies to pages-usecs to avoid calling jiffies_to_usecs() in xacct_add_tsk() which might overflow. Signed-off-by: Jonathan Lim <jlim@sgi.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25pidns: remove find_task_by_pid, unused for a long timePavel Emelyanov
It seems to me that it was a mistake marking this function as deprecated and scheduling it for removal, rather than resolutely removing it after the last caller's death. Anyway - better late, then never. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25pidns: remove now unused find_pid function.Pavel Emelyanov
This one had the only users so far - the kill_proc, which is removed, so drop this (invalid in namespaced world) call too. And of course - erase all references on it from comments. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25pidns: remove now unused kill_proc functionPavel Emelyanov
This function operated on a pid_t to kill a task, which is no longer valid in a containerized system. It has finally lost all its users and we can safely remove it from the tree. Signed-off-by: Pavel Emelyanov <xemul@openvz.org> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25kill PF_BORROWED_MM in favour of PF_KTHREADOleg Nesterov
Kill PF_BORROWED_MM. Change use_mm/unuse_mm to not play with ->flags, and do s/PF_BORROWED_MM/PF_KTHREAD/ for a couple of other users. No functional changes yet. But this allows us to do further fixes/cleanups. oom_kill/ptrace/etc often check "p->mm != NULL" to filter out the kthreads, this is wrong because of use_mm(). The problem with PF_BORROWED_MM is that we need task_lock() to avoid races. With this patch we can check PF_KTHREAD directly, or use a simple lockless helper: /* The result must not be dereferenced !!! */ struct mm_struct *__get_task_mm(struct task_struct *tsk) { if (tsk->flags & PF_KTHREAD) return NULL; return tsk->mm; } Note also ecard_task(). It runs with ->mm != NULL, but it's the kernel thread without PF_BORROWED_MM. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25introduce PF_KTHREAD flagOleg Nesterov
Introduce the new PF_KTHREAD flag to mark the kernel threads. It is set by INIT_TASK() and copied to the forked childs (we could set it in kthreadd() along with PF_NOFREEZE instead). daemonize() was changed as well. In that case testing of PF_KTHREAD is racy, but daemonize() is hopeless anyway. This flag is cleared in do_execve(), before search_binary_handler(). Probably not the best place, we can do this in exec_mmap() or in start_thread(), or clear it along with PF_FORKNOEXEC. But I think this doesn't matter in practice, and if do_execve() fails kthread should die soon. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25ptrace: give more respect to SIGKILLOleg Nesterov
ptrace_stop() has some complicated checks to prevent the scheduling in the TASK_TRACED state with the pending SIGKILL, but these checks are racy, and they depend on arch_ptrace_stop_needed(). This patch assumes that the traced task should die asap if it was killed by SIGKILL, in that case schedule()->signal_pending_state() has no reason to ignore the TASK_WAKEKILL part of TASK_TRACED, and we can kill this nasty special case. Note: do_exit()->ptrace_notify() is special, the killed task can already dequeue SIGKILL at this point. Another indication that fatal_signal_pending() is not exactly right. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Ingo Molnar <mingo@elte.hu> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24add a helper function to test if an object is on the stackFUJITA Tomonori
lib/debugobjects.c has a function to test if an object is on the stack. The block layer and ide needs it (they need to avoid DMA from/to stack buffers). This patch moves the function to include/linux/sched.h so that everyone can use it. lib/debugobjects.c uses current->stack but this patch uses a task_stack_page() accessor, which is a preferable way to access the stack. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>