aboutsummaryrefslogtreecommitdiff
path: root/include/net/scm.h
AgeCommit message (Collapse)Author
2006-08-02[AF_UNIX]: Kernel memory leak fix for af_unix datagram getpeersec patchCatherine Zhang
From: Catherine Zhang <cxzhang@watson.ibm.com> This patch implements a cleaner fix for the memory leak problem of the original unix datagram getpeersec patch. Instead of creating a security context each time a unix datagram is sent, we only create the security context when the receiver requests it. This new design requires modification of the current unix_getsecpeer_dgram LSM hook and addition of two new hooks, namely, secid_to_secctx and release_secctx. The former retrieves the security context and the latter releases it. A hook is required for releasing the security context because it is up to the security module to decide how that's done. In the case of Selinux, it's a simple kfree operation. Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-29[AF_UNIX]: Datagram getpeersecCatherine Zhang
This patch implements an API whereby an application can determine the label of its peer's Unix datagram sockets via the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of the peer of a Unix datagram socket. The application can then use this security context to determine the security context for processing on behalf of the peer who sent the packet. Patch design and implementation: The design and implementation is very similar to the UDP case for INET sockets. Basically we build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). To retrieve the security context, the application first indicates to the kernel such desire by setting the SO_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for Unix datagram socket should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_SOCKET, SO_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_SOCKET && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } sock_setsockopt is enhanced with a new socket option SOCK_PASSSEC to allow a server socket to receive security context of the peer. Testing: We have tested the patch by setting up Unix datagram client and server applications. We verified that the server can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: Acked-by: James Morris <jmorris@namei.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[AF_UNIX]: scm: better initializationBenjamin LaHaise
Instead of doing a memset then initialization of the fields of the scm structure, just initialize all the members explicitly. Prevent reloading of current on x86 and x86-64 by storing the value in a local variable for subsequent dereferences. This is worth a ~7KB/s increase in af_unix bandwidth. Note that we avoid the issues surrounding potentially uninitialized members of the ucred structure by constructing a struct ucred instead of assigning the members individually, which forces the compiler to zero any padding. [ I modified the patch not to use the aggregate assignment since gcc-3.4.x and earlier cannot optimize that properly at all even though gcc-4.0.x and later can -DaveM ] Signed-off-by: Benjamin LaHaise <benjamin.c.lahaise@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!