Age | Commit message (Collapse) | Author |
|
clean up tick-broadcast.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
While the !highres/!dyntick code assigns the duty of the do_timer() call to
one specific CPU, this was dropped in the highres/dyntick part during
development.
Steven Rostedt discovered the xtime lock contention on highres/dyntick due
to several CPUs trying to update jiffies.
Add the single CPU assignement back. In the dyntick case this needs to be
handled carefully, as the CPU which has the do_timer() duty must drop the
assignement and let it be grabbed by another CPU, which is active.
Otherwise the do_timer() calls would not happen during the long sleep.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Mark Lord <mlord@pobox.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I finally found a dual core box, which survives suspend/resume without
crashing in the middle of nowhere. Sigh, I never figured out from the
code and the bug reports what's going on.
The observed hangs are caused by a stale state transition of the clock
event devices, which keeps the RCU synchronization away from completion,
when the non boot CPU is brought back up.
The suspend/resume in oneshot mode needs the similar care as the
periodic mode during suspend to RAM. My assumption that the state
transitions during the different shutdown/bringups of s2disk would go
through the periodic boot phase and then switch over to highres resp.
nohz mode were simply wrong.
Add the appropriate suspend / resume handling for the non periodic
modes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The programming of periodic tick devices needs to be saved/restored
across suspend/resume - otherwise we might end up with a system coming
up that relies on getting a PIT (or HPET) interrupt, while those devices
default to 'no interrupts' after powerup. (To confuse things it worked
to a certain degree on some systems because the lapic gets initialized
as a side-effect of SMP bootup.)
This suspend / resume thing was dropped unintentionally during the
last-minute -mm code reshuffling.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With Ingo Molnar <mingo@elte.hu>
Add functions to provide dynamic ticks and high resolution timers. The code
which keeps track of jiffies and handles the long idle periods is shared
between tick based and high resolution timer based dynticks. The dyntick
functionality can be disabled on the kernel commandline. Provide also the
infrastructure to support high resolution timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With Ingo Molnar <mingo@elte.hu>
Add broadcast functionality, so per cpu clock event devices can be registered
as dummy devices or switched from/to broadcast on demand. The broadcast
function distributes the events via the broadcast function of the clock event
device. This is primarily designed to replace the switch apic timer to / from
IPI in power states, where the apic stops.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|