aboutsummaryrefslogtreecommitdiff
path: root/mm/slub.c
AgeCommit message (Collapse)Author
2007-05-09vmstat: use our own timer eventsChristoph Lameter
vmstat is currently using the cache reaper to periodically bring the statistics up to date. The cache reaper does only exists in SLUB as a way to provide compatibility with SLAB. This patch removes the vmstat calls from the slab allocators and provides its own handling. The advantage is also that we can use a different frequency for the updates. Refreshing vm stats is a pretty fast job so we can run this every second and stagger this by only one tick. This will lead to some overlap in large systems. F.e a system running at 250 HZ with 1024 processors will have 4 vm updates occurring at once. However, the vm stats update only accesses per node information. It is only necessary to stagger the vm statistics updates per processor in each node. Vm counter updates occurring on distant nodes will not cause cacheline contention. We could implement an alternate approach that runs the first processor on each node at the second and then each of the other processor on a node on a subsequent tick. That may be useful to keep a large amount of the second free of timer activity. Maybe the timer folks will have some feedback on this one? [jirislaby@gmail.com: add missing break] Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Jiri Slaby <jirislaby@gmail.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09Add suspend-related notifications for CPU hotplugRafael J. Wysocki
Since nonboot CPUs are now disabled after tasks and devices have been frozen and the CPU hotplug infrastructure is used for this purpose, we need special CPU hotplug notifications that will help the CPU-hotplug-aware subsystems distinguish normal CPU hotplug events from CPU hotplug events related to a system-wide suspend or resume operation in progress. This patch introduces such notifications and causes them to be used during suspend and resume transitions. It also changes all of the CPU-hotplug-aware subsystems to take these notifications into consideration (for now they are handled in the same way as the corresponding "normal" ones). [oleg@tv-sign.ru: cleanups] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Cc: Gautham R Shenoy <ego@in.ibm.com> Cc: Pavel Machek <pavel@ucw.cz> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09krealloc: fix kerneldoc commentsPekka J Enberg
No "blank" (or "*") line is allowed between the function name and lines for it parameter(s). Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: rework slab order determinationChristoph Lameter
In some cases SLUB is creating uselessly slabs that are larger than slub_max_order. Also the layout of some of the slabs was not satisfactory. Go to an iterarive approach. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: include lifetime stats and sets of cpus / nodes in tracking outputChristoph Lameter
We have information about how long an object existed and about the nodes and cpus where the allocations and frees took place. Add that information to the tracking output in /sys/slab/xx/alloc_calls and /sys/slab/free_calls This will then enable slabinfo to output nice reports like this: christoph@qirst:~/slub$ ./slabinfo kmalloc-128 Slabcache: kmalloc-128 Aliases: 0 Order : 0 Sizes (bytes) Slabs Debug Memory ------------------------------------------------------------------------ Object : 128 Total : 12 Sanity Checks : On Total: 49152 SlabObj: 200 Full : 7 Redzoning : On Used : 24832 SlabSiz: 4096 Partial: 4 Poisoning : On Loss : 24320 Loss : 72 CpuSlab: 1 Tracking : On Lalig: 13968 Align : 8 Objects: 20 Tracing : Off Lpadd: 1152 kmalloc-128 has no kmem_cache operations kmalloc-128: Kernel object allocation ----------------------------------------------------------------------- 6 param_sysfs_setup+0x71/0x130 age=284512/284512/284512 pid=1 nodes=0-1,3 11 percpu_populate+0x39/0x80 age=283914/284428/284512 pid=1 nodes=0 21 __register_chrdev_region+0x31/0x170 age=282896/284347/284473 pid=1-1705 nodes=0-2 1 sys_inotify_init+0x76/0x1c0 age=283423 pid=1004 nodes=0 19 as_get_io_context+0x32/0xd0 age=6/247567/283988 pid=1-11782 nodes=0,2 10 ida_pre_get+0x4a/0x80 age=277666/283773/284526 pid=0-2177 nodes=0,2 24 kobject_kset_add_dir+0x37/0xb0 age=282727/283860/284472 pid=1-1723 nodes=0-2 1 acpi_ds_build_internal_buffer_obj+0xd3/0x11d age=284508 pid=1 nodes=0 24 con_insert_unipair+0xd7/0x110 age=284438/284438/284438 pid=1 nodes=0,2 1 uart_open+0x2d2/0x4b0 age=283896 pid=1 nodes=0 26 dma_pool_create+0x73/0x1a0 age=282762/282833/282916 pid=1705-1723 nodes=0 1 neigh_table_init_no_netlink+0xd2/0x210 age=284461 pid=1 nodes=0 2 neigh_parms_alloc+0x2b/0xe0 age=284410/284411/284412 pid=1 nodes=2 2 neigh_resolve_output+0x1e1/0x280 age=276289/276291/276293 pid=0-2443 nodes=0 1 netlink_kernel_create+0x90/0x170 age=284472 pid=1 nodes=0 4 xt_alloc_table_info+0x39/0xf0 age=283958/283958/283959 pid=1 nodes=1 3 fn_hash_insert+0x473/0x720 age=277653/277661/277666 pid=2177-2185 nodes=0 1 get_mtrr_state+0x285/0x2a0 age=284526 pid=0 nodes=0 1 cacheinfo_cpu_callback+0x26d/0x3e0 age=284458 pid=1 nodes=0 29 kernel_param_sysfs_setup+0x25/0x90 age=284511/284511/284512 pid=1 nodes=0-1,3 5 process_zones+0x5e/0x170 age=284546/284546/284546 pid=0 nodes=0 1 drm_core_init+0x48/0x160 age=284421 pid=1 nodes=2 kmalloc-128: Kernel object freeing ------------------------------------------------------------------------ 163 <not-available> age=4295176847 pid=0 nodes=0-3 1 __vunmap+0x6e/0xf0 age=282907 pid=1723 nodes=0 28 free_as_io_context+0x12/0x90 age=9243/262197/283474 pid=42-11754 nodes=0 1 acpi_get_object_info+0x1b7/0x1d4 age=284475 pid=1 nodes=0 1 do_acpi_find_child+0x45/0x4e age=284475 pid=1 nodes=0 NUMA nodes : 0 1 2 3 ------------------------------------------ All slabs 7 2 2 1 Partial slabs 2 2 0 0 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: add CONFIG_SLUB_DEBUGChristoph Lameter
CONFIG_SLUB_DEBUG can be used to switch off the debugging and sysfs components of SLUB. Thus SLUB will be able to replace SLOB. SLUB can arrange objects in a denser way than SLOB and the code size should be minimal without debugging and sysfs support. Note that CONFIG_SLUB_DEBUG is materially different from CONFIG_SLAB_DEBUG. CONFIG_SLAB_DEBUG is used to enable slab debugging in SLAB. SLUB enables debugging via a boot parameter. SLUB debug code should always be present. CONFIG_SLUB_DEBUG can be modified in the embedded config section. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: move tracking definitions and check_valid_pointer() away from debug codeChristoph Lameter
Move the tracking definitions and the check_valid_pointer() function away from the debugging related functions. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: consolidate trace codeChristoph Lameter
Trace in both slab_alloc and slab_free has a lot of common code. Use a single function for both. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: introduce DebugSlab(page)Christoph Lameter
This replaces the PageError() checking. DebugSlab is clearer and allows for future changes to the page bit used. We also need it to support CONFIG_SLUB_DEBUG. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: move resiliency check into SYSFS sectionChristoph Lameter
Move the resiliency check into the SYSFS section after validate_slab that is used by the resiliency check. This will avoid a forward declaration. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: add macros for scanning objects in a slabChristoph Lameter
Scanning of objects happens in a number of functions. Consolidate that code. DECLARE_BITMAP instead of coding the declaration for bitmaps. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: update commentsChristoph Lameter
Update comments throughout SLUB to reflect the new developments. Fix up various awkward sentences. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: get rid of finish_bootstrapChristoph Lameter
Its only purpose was to bring some sort of symmetry to sysfs usage when dealing with bootstrapping per cpu flushing. Since we do not time out slabs anymore we have no need to run finish_bootstrap even without sysfs. Fold it back into slab_sysfs_init and drop the initcall for the !SYFS case. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: clean up kreallocChristoph Lameter
We really do not need all this gaga there. ksize gives us all the information we need to figure out if the object can cope with the new size. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: use check_valid_pointer in kmem_ptr_validateChristoph Lameter
We needlessly duplicate code. Also make check_valid_pointer inline. Signed-off-by: Christoph LAemter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: after object padding only needed for RedzoningChristoph Lameter
If no redzoning is selected then we do not need padding before the next object. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09SLUB: add support for dynamic cacheline size determinationChristoph Lameter
SLUB currently assumes that the cacheline size is static. However, i386 f.e. supports dynamic cache line size determination. Use cache_line_size() instead of L1_CACHE_BYTES in the allocator. That also explains the purpose of SLAB_HWCACHE_ALIGN. So we will need to keep that one around to allow dynamic aligning of objects depending on boot determination of the cache line size. [akpm@linux-foundation.org: need to define it before we use it] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07Fix up SLUB compileLinus Torvalds
The newly merged SLUB allocator patches had been generated before the removal of "struct subsystem", and ended up applying fine, but wouldn't build based on the current tree as a result. Fix up that merge error - not that SLUB is likely really ready for showtime yet, but at least I can fix the trivial stuff. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07Slab allocators: remove useless __GFP_NO_GROW flagChristoph Lameter
There is no user remaining and I have never seen any use of that flag. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove SLAB_CTOR_ATOMICChristoph Lameter
SLAB_CTOR atomic is never used which is no surprise since I cannot imagine that one would want to do something serious in a constructor or destructor. In particular given that the slab allocators run with interrupts disabled. Actions in constructors and destructors are by their nature very limited and usually do not go beyond initializing variables and list operations. (The i386 pgd ctor and dtors do take a spinlock in constructor and destructor..... I think that is the furthest we go at this point.) There is no flag passed to the destructor so removing SLAB_CTOR_ATOMIC also establishes a certain symmetry. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove SLAB_DEBUG_INITIAL flagChristoph Lameter
I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by SLAB. I think its purpose was to have a callback after an object has been freed to verify that the state is the constructor state again? The callback is performed before each freeing of an object. I would think that it is much easier to check the object state manually before the free. That also places the check near the code object manipulation of the object. Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was compiled with SLAB debugging on. If there would be code in a constructor handling SLAB_DEBUG_INITIAL then it would have to be conditional on SLAB_DEBUG otherwise it would just be dead code. But there is no such code in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real use of, difficult to understand and there are easier ways to accomplish the same effect (i.e. add debug code before kfree). There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be clear in fs inode caches. Remove the pointless checks (they would even be pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors. This is the last slab flag that SLUB did not support. Remove the check for unimplemented flags from SLUB. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove obsolete SLAB_MUST_HWCACHE_ALIGNChristoph Lameter
This patch was recently posted to lkml and acked by Pekka. The flag SLAB_MUST_HWCACHE_ALIGN is 1. Never checked by SLAB at all. 2. A duplicate of SLAB_HWCACHE_ALIGN for SLUB 3. Fulfills the role of SLAB_HWCACHE_ALIGN for SLOB. The only remaining use is in sparc64 and ppc64 and their use there reflects some earlier role that the slab flag once may have had. If its specified then SLAB_HWCACHE_ALIGN is also specified. The flag is confusing, inconsistent and has no purpose. Remove it. Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slub: remove object activities out of checking functionsChristoph Lameter
Make sure that the check function really only check things and do not perform activities. Extract the tracing and object seeding out of the two check functions and place them into slab_alloc and slab_free Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLUB: Free slabs and sort partial slab lists in kmem_cache_shrinkChristoph Lameter
At kmem_cache_shrink check if we have any empty slabs on the partial if so then remove them. Also--as an anti-fragmentation measure--sort the partial slabs so that the most fully allocated ones come first and the least allocated last. The next allocations may fill up the nearly full slabs. Having the least allocated slabs last gives them the maximum chance that their remaining objects may be freed. Thus we can hopefully minimize the partial slabs. I think this is the best one can do in terms antifragmentation measures. Real defragmentation (meaning moving objects out of slabs with the least free objects to those that are almost full) can be implemted by reverse scanning through the list produced here but that would mean that we need to provide a callback at slab cache creation that allows the deletion or moving of an object. This will involve slab API changes, so defer for now. Cc: Mel Gorman <mel@skynet.ie> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slub: add ability to list alloc / free callers per slabChristoph Lameter
This patch enables listing the callers who allocated or freed objects in a cache. For example to list the allocators for kmalloc-128 do cat /sys/slab/kmalloc-128/alloc_calls 7 sn_io_slot_fixup+0x40/0x700 7 sn_io_slot_fixup+0x80/0x700 9 sn_bus_fixup+0xe0/0x380 6 param_sysfs_setup+0xf0/0x280 276 percpu_populate+0xf0/0x1a0 19 __register_chrdev_region+0x30/0x360 8 expand_files+0x2e0/0x6e0 1 sys_epoll_create+0x60/0x200 1 __mounts_open+0x140/0x2c0 65 kmem_alloc+0x110/0x280 3 alloc_disk_node+0xe0/0x200 33 as_get_io_context+0x90/0x280 74 kobject_kset_add_dir+0x40/0x140 12 pci_create_bus+0x2a0/0x5c0 1 acpi_ev_create_gpe_block+0x120/0x9e0 41 con_insert_unipair+0x100/0x1c0 1 uart_open+0x1c0/0xba0 1 dma_pool_create+0xe0/0x340 2 neigh_table_init_no_netlink+0x260/0x4c0 6 neigh_parms_alloc+0x30/0x200 1 netlink_kernel_create+0x130/0x320 5 fz_hash_alloc+0x50/0xe0 2 sn_common_hubdev_init+0xd0/0x6e0 28 kernel_param_sysfs_setup+0x30/0x180 72 process_zones+0x70/0x2e0 cat /sys/slab/kmalloc-128/free_calls 558 <not-available> 3 sn_io_slot_fixup+0x600/0x700 84 free_fdtable_rcu+0x120/0x260 2 seq_release+0x40/0x60 6 kmem_free+0x70/0xc0 24 free_as_io_context+0x20/0x200 1 acpi_get_object_info+0x3a0/0x3e0 1 acpi_add_single_object+0xcf0/0x1e40 2 con_release_unimap+0x80/0x140 1 free+0x20/0x40 SLAB_STORE_USER must be enabled for a slab cache by either booting with "slab_debug" or enabling user tracking specifically for the slab of interest. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLUB: Add MIN_PARTIALChristoph Lameter
We leave a mininum of partial slabs on nodes when we search for partial slabs on other node. Define a constant for that value. Then modify slub to keep MIN_PARTIAL slabs around. This avoids bad situations where a function frees the last object in a slab (which results in the page being returned to the page allocator) only to then allocate one again (which requires getting a page back from the page allocator if the partial list was empty). Keeping a couple of slabs on the partial list reduces overhead. Empty slabs are added to the end of the partial list to insure that partially allocated slabs are consumed first (defragmentation). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slub: validation of slabs (metadata and guard zones)Christoph Lameter
This enables validation of slab. Validation means that all objects are checked to see if there are redzone violations, if padding has been overwritten or any pointers have been corrupted. Also checks the consistency of slab counters. Validation enables the detection of metadata corruption without the kernel having to execute code that actually uses (allocs/frees) and object. It allows one to make sure that the slab metainformation and the guard values around an object have not been compromised. A single slabcache can be checked by writing a 1 to the "validate" file. i.e. echo 1 >/sys/slab/kmalloc-128/validate or use the slabinfo tool to check all slabs slabinfo -v Error messages will show up in the syslog. Note that validation can only reach slabs that are on a list. This means that we are usually restricted to partial slabs and active slabs unless SLAB_STORE_USER is active which will build a full slab list and allows validation of slabs that are fully in use. Booting with "slub_debug" set will enable SLAB_STORE_USER and then full diagnostic are available. Note that we attempt to push cpu slabs back to the lists when we start the check. If the cpu slab is reactivated before we get to it (another processor grabs it before we get to it) then it cannot be checked. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slub: enable tracking of full slabsChristoph Lameter
If slab tracking is on then build a list of full slabs so that we can verify the integrity of all slabs and are also able to built list of alloc/free callers. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slub: fix object trackingChristoph Lameter
Object tracking did not work the right way for several call chains. Fix this up by adding a new parameter to slub_alloc and slub_free that specifies the caller address explicitly. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07Add virt_to_head_page and consolidate code in slab and slubChristoph Lameter
Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07Make page->private usable in compound pagesChristoph Lameter
If we add a new flag so that we can distinguish between the first page and the tail pages then we can avoid to use page->private in the first page. page->private == page for the first page, so there is no real information in there. Freeing up page->private makes the use of compound pages more transparent. They become more usable like real pages. Right now we have to be careful f.e. if we are going beyond PAGE_SIZE allocations in the slab on i386 because we can then no longer use the private field. This is one of the issues that cause us not to support debugging for page size slabs in SLAB. Having page->private available for SLUB would allow more meta information in the page struct. I can probably avoid the 16 bit ints that I have in there right now. Also if page->private is available then a compound page may be equipped with buffer heads. This may free up the way for filesystems to support larger blocks than page size. We add PageTail as an alias of PageReclaim. Compound pages cannot currently be reclaimed. Because of the alias one needs to check PageCompound first. The RFC for the this approach was discussed at http://marc.info/?t=117574302800001&r=1&w=2 [nacc@us.ibm.com: fix hugetlbfs] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLUB: allocate smallest object size if the user asks for 0 bytesChristoph Lameter
Makes SLUB behave like SLAB in this area to avoid issues.... Throw a stack dump to alert people. At some point the behavior should be switched back. NULL is no memory as far as I can tell and if the use asked for 0 bytes then he need to get no memory. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLUB: change default alignmentsChristoph Lameter
Structures may contain u64 items on 32 bit platforms that are only able to address 64 bit items on 64 bit boundaries. Change the mininum alignment of slabs to conform to those expectations. ARCH_KMALLOC_MINALIGN must be changed for good since a variety of structure are mixed in the general slabs. ARCH_SLAB_MINALIGN is changed because currently there is no consistent specification of object alignment. We may have that in the future when the KMEM_CACHE and related macros are used to generate slabs. These pass the alignment of the structure generated by the compiler to the slab. With KMEM_CACHE etc we could align structures that do not contain 64 bit values to 32 bit boundaries potentially saving some memory. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLUB coreChristoph Lameter
This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>