aboutsummaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2009-12-16HWPOISON: Add soft page offline supportAndi Kleen
This is a simpler, gentler variant of memory_failure() for soft page offlining controlled from user space. It doesn't kill anything, just tries to invalidate and if that doesn't work migrate the page away. This is useful for predictive failure analysis, where a page has a high rate of corrected errors, but hasn't gone bad yet. Instead it can be offlined early and avoided. The offlining is controlled from sysfs, including a new generic entry point for hard page offlining for symmetry too. We use the page isolate facility to prevent re-allocation race. Normally this is only used by memory hotplug. To avoid races with memory allocation I am using lock_system_sleep(). This avoids the situation where memory hotplug is about to isolate a page range and then hwpoison undoes that work. This is a big hammer currently, but the simplest solution currently. When the page is not free or LRU we try to free pages from slab and other caches. The slab freeing is currently quite dumb and does not try to focus on the specific slab cache which might own the page. This could be potentially improved later. Thanks to Fengguang Wu and Haicheng Li for some fixes. [Added fix from Andrew Morton to adapt to new migrate_pages prototype] Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: Undefine short-hand macros after use to avoid namespace conflictAndi Kleen
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: Use new shake_page in memory_failureAndi Kleen
shake_page handles more types of page caches than the much simpler lru_add_drain_all: - slab (quite inefficiently for now) - any other caches with a shrinker callback - per cpu page allocator pages - per CPU LRU Use this call to try to turn pages into free or LRU pages. Then handle the case of the page becoming free after drain everything. Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: mention HWPoison in Kconfig entryAndi Kleen
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: Use get_user_page_fast in hwpoison madviseAndi Kleen
The previous version didn't take the mmap_sem before calling gup(), which is racy. Use get_user_pages_fast() instead which doesn't need any locks. This is also faster of course, but then it doesn't really matter because this is just a testing path. Based on report from Nick Piggin. Cc: npiggin@suse.de Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: add an interface to switch off/on all the page filtersHaicheng Li
In some use cases, user doesn't need extra filtering. E.g. user program can inject errors through madvise syscall to its own pages, however it might not know what the page state exactly is or which inode the page belongs to. So introduce an one-off interface "corrupt-filter-enable". Echo 0 to switch off page filters, and echo 1 to switch on the filters. [AK: changed default to 0] Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: add memory cgroup filterAndi Kleen
The hwpoison test suite need to inject hwpoison to a collection of selected task pages, and must not touch pages not owned by them and thus kill important system processes such as init. (But it's OK to mis-hwpoison free/unowned pages as well as shared clean pages. Mis-hwpoison of shared dirty pages will kill all tasks, so the test suite will target all or non of such tasks in the first place.) The memory cgroup serves this purpose well. We can put the target processes under the control of a memory cgroup, and tell the hwpoison injection code to only kill pages associated with some active memory cgroup. The prerequisite for doing hwpoison stress tests with mem_cgroup is, the mem_cgroup code tracks task pages _accurately_ (unless page is locked). Which we believe is/should be true. The benefits are simplification of hwpoison injector code. Also the mem_cgroup code will automatically be tested by hwpoison test cases. The alternative interfaces pin-pfn/unpin-pfn can also delegate the (process and page flags) filtering functions reliably to user space. However prototype implementation shows that this scheme adds more complexity than we wanted. Example test case: mkdir /cgroup/hwpoison usemem -m 100 -s 1000 & echo `jobs -p` > /cgroup/hwpoison/tasks memcg_ino=$(ls -id /cgroup/hwpoison | cut -f1 -d' ') echo $memcg_ino > /debug/hwpoison/corrupt-filter-memcg page-types -p `pidof init` --hwpoison # shall do nothing page-types -p `pidof usemem` --hwpoison # poison its pages [AK: Fix documentation] [Add fix for problem noticed by Li Zefan <lizf@cn.fujitsu.com>; dentry in the css could be NULL] CC: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Hugh Dickins <hugh.dickins@tiscali.co.uk> CC: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> CC: Balbir Singh <balbir@linux.vnet.ibm.com> CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> CC: Li Zefan <lizf@cn.fujitsu.com> CC: Paul Menage <menage@google.com> CC: Nick Piggin <npiggin@suse.de> CC: Andi Kleen <andi@firstfloor.org> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16memcg: add accessor to mem_cgroup.cssWu Fengguang
So that an outside user can free the reference count grabbed by try_get_mem_cgroup_from_page(). CC: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Hugh Dickins <hugh.dickins@tiscali.co.uk> CC: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> CC: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16memcg: rename and export try_get_mem_cgroup_from_page()Wu Fengguang
So that the hwpoison injector can get mem_cgroup for arbitrary page and thus know whether it is owned by some mem_cgroup task(s). [AK: Merged with latest git tree] CC: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Hugh Dickins <hugh.dickins@tiscali.co.uk> CC: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> CC: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: add page flags filterWu Fengguang
When specified, only poison pages if ((page_flags & mask) == value). - corrupt-filter-flags-mask - corrupt-filter-flags-value This allows stress testing of many kinds of pages. Strictly speaking, the buddy pages requires taking zone lock, to avoid setting PG_hwpoison on a "was buddy but now allocated to someone" page. However we can just do nothing because we set PG_locked in the beginning, this prevents the page allocator from allocating it to someone. (It will BUG() on the unexpected PG_locked, which is fine for hwpoison testing.) [AK: Add select PROC_PAGE_MONITOR to satisfy dependency] CC: Nick Piggin <npiggin@suse.de> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: limit hwpoison injector to known page typesWu Fengguang
__memory_failure()'s workflow is set PG_hwpoison //... unset PG_hwpoison if didn't pass hwpoison filter That could kill unrelated process if it happens to page fault on the page with the (temporary) PG_hwpoison. The race should be big enough to appear in stress tests. Fix it by grabbing the page and checking filter at inject time. This also avoids the very noisy "Injecting memory failure..." messages. - we don't touch madvise() based injection, because the filters are generally not necessary for it. - if we want to apply the filters to h/w aided injection, we'd better to rearrange the logic in __memory_failure() instead of this patch. AK: fix documentation, use drain all, cleanups CC: Haicheng Li <haicheng.li@intel.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: add fs/device filtersWu Fengguang
Filesystem data/metadata present the most tricky-to-isolate pages. It requires careful code review and stress testing to get them right. The fs/device filter helps to target the stress tests to some specific filesystem pages. The filter condition is block device's major/minor numbers: - corrupt-filter-dev-major - corrupt-filter-dev-minor When specified (non -1), only page cache pages that belong to that device will be poisoned. The filters are checked reliably on the locked and refcounted page. Haicheng: clear PG_hwpoison and drop bad page count if filter not OK AK: Add documentation CC: Haicheng Li <haicheng.li@intel.com> CC: Nick Piggin <npiggin@suse.de> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: return 0 to indicate success reliablyWu Fengguang
Return 0 to indicate success, when - action result is RECOVERED or DELAYED - no extra page reference Note that dirty swapcache pages are kept in swapcache, so can have one more reference count. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: make semantics of IGNORED/DELAYED clearWu Fengguang
Change semantics for - IGNORED: not handled; it may well be _unsafe_ - DELAYED: to be handled later; it is _safe_ With this change, - IGNORED/FAILED mean (maybe) Error - DELAYED/RECOVERED mean Success Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: Add unpoisoning supportWu Fengguang
The unpoisoning interface is useful for stress testing tools to reclaim poisoned pages (to prevent OOM) There is no hardware level unpoisioning, so this cannot be used for real memory errors, only for software injected errors. Note that it may leak pages silently - those who have been removed from LRU cache, but not isolated from page cache/swap cache at hwpoison time. Especially the stress test of dirty swap cache pages shall reboot system before exhausting memory. AK: Fix comments, add documentation, add printks, rename symbol Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: detect free buddy pages explicitlyWu Fengguang
Most free pages in the buddy system have no PG_buddy set. Introduce is_free_buddy_page() for detecting them reliably. CC: Nick Piggin <npiggin@suse.de> CC: Mel Gorman <mel@linux.vnet.ibm.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: remove the free buddy page handlerWu Fengguang
The buddy page has already be handled in the very beginning. So remove redundant code. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: introduce delete_from_lru_cache()Wu Fengguang
Introduce delete_from_lru_cache() to - clear PG_active, PG_unevictable to avoid complains at unpoison time - move the isolate_lru_page() call back to the handlers instead of the entrance of __memory_failure(), this is more hwpoison filter friendly Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: comment dirty swapcache pagesWu Fengguang
AK: Improve comment Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: comment the possible set_page_dirty() raceWu Fengguang
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: abort on failed unmapWu Fengguang
Don't try to isolate a still mapped page. Otherwise we will hit the BUG_ON(page_mapped(page)) in __remove_from_page_cache(). Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: Turn ref argument into flags argumentAndi Kleen
Now that "ref" is just a boolean turn it into a flags argument. First step is only a single flag that makes the code's intention more clear, but more may follow. Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: avoid grabbing the page count multiple times during madvise injectionWu Fengguang
If page is double referenced in madvise_hwpoison() and __memory_failure(), remove_mapping() will fail because it expects page_count=2. Fix it by not grabbing extra page count in __memory_failure(). Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: return ENXIO on invalid page numberWu Fengguang
Use a different errno than the usual EIO for invalid page numbers. This is mainly for better reporting for the injector. This also avoids calling action_result() with invalid pfn. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: remove the anonymous entryWu Fengguang
(PG_swapbacked && !PG_lru) pages should not happen. Better to treat them as unknown pages. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: Be more aggressive at freeing non LRU cachesAndi Kleen
shake_page handles more types of page caches than lru_drain_all() - per cpu page allocator pages - per CPU LRU Stops early when the page became free. Used in followon patches. Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-15nommu: fix malloc performance by adding uninitialized flagJie Zhang
The NOMMU code currently clears all anonymous mmapped memory. While this is what we want in the default case, all memory allocation from userspace under NOMMU has to go through this interface, including malloc() which is allowed to return uninitialized memory. This can easily be a significant performance penalty. So for constrained embedded systems were security is irrelevant, allow people to avoid clearing memory unnecessarily. This also alters the ELF-FDPIC binfmt such that it obtains uninitialised memory for the brk and stack region. Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Robin Getz <rgetz@blackfin.uclinux.org> Signed-off-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Paul Mundt <lethal@linux-sh.org> Acked-by: Greg Ungerer <gerg@snapgear.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm hugetlb: add hugepage support to pagemapNaoya Horiguchi
This patch enables extraction of the pfn of a hugepage from /proc/pid/pagemap in an architecture independent manner. Details ------- My test program (leak_pagemap) works as follows: - creat() and mmap() a file on hugetlbfs (file size is 200MB == 100 hugepages,) - read()/write() something on it, - call page-types with option -p, - munmap() and unlink() the file on hugetlbfs Without my patches ------------------ $ ./leak_pagemap flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 1 0 __________________________________ 0x0000000000000804 1 0 __R________M______________________ referenced,mmap 0x000000000000086c 81 0 __RU_lA____M______________________ referenced,uptodate,lru,active,mmap 0x0000000000005808 5 0 ___U_______Ma_b___________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 12 0 ___U_lA____Ma_b___________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 1 0 __RU_lA____Ma_b___________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 101 0 The output of page-types don't show any hugepage. With my patches --------------- $ ./leak_pagemap flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 1 0 __________________________________ 0x0000000000030000 51100 199 ________________TG________________ compound_tail,huge 0x0000000000028018 100 0 ___UD__________H_G________________ uptodate,dirty,compound_head,huge 0x0000000000000804 1 0 __R________M______________________ referenced,mmap 0x000000000000080c 1 0 __RU_______M______________________ referenced,uptodate,mmap 0x000000000000086c 80 0 __RU_lA____M______________________ referenced,uptodate,lru,active,mmap 0x0000000000005808 4 0 ___U_______Ma_b___________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 12 0 ___U_lA____Ma_b___________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 1 0 __RU_lA____Ma_b___________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 51300 200 The output of page-types shows 51200 pages contributing to hugepages, containing 100 head pages and 51100 tail pages as expected. [akpm@linux-foundation.org: build fix] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm: hugetlb: fix hugepage memory leak in walk_page_range()Naoya Horiguchi
Most callers of pmd_none_or_clear_bad() check whether the target page is in a hugepage or not, but walk_page_range() do not check it. So if we read /proc/pid/pagemap for the hugepage on x86 machine, the hugepage memory is leaked as shown below. This patch fixes it. Details ======= My test program (leak_pagemap) works as follows: - creat() and mmap() a file on hugetlbfs (file size is 200MB == 100 hugepages,) - read()/write() something on it, - call page-types with option -p (walk around the page tables), - munmap() and unlink() the file on hugetlbfs Without my patches ------------------ $ cat /proc/meminfo |grep "HugePage" HugePages_Total: 1000 HugePages_Free: 1000 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ./leak_pagemap [snip output] $ cat /proc/meminfo |grep "HugePage" HugePages_Total: 1000 HugePages_Free: 900 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ls /hugetlbfs/ $ 100 hugepages are accounted as used while there is no file on hugetlbfs. With my patches --------------- $ cat /proc/meminfo |grep "HugePage" HugePages_Total: 1000 HugePages_Free: 1000 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ./leak_pagemap [snip output] $ cat /proc/meminfo |grep "HugePage" HugePages_Total: 1000 HugePages_Free: 1000 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ls /hugetlbfs $ No memory leaks. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm: hugetlb: fix hugepage memory leak in mincore()Naoya Horiguchi
Most callers of pmd_none_or_clear_bad() check whether the target page is in a hugepage or not, but mincore() and walk_page_range() do not check it. So if we use mincore() on a hugepage on x86 machine, the hugepage memory is leaked as shown below. This patch fixes it by extending mincore() system call to support hugepages. Details ======= My test program (leak_mincore) works as follows: - creat() and mmap() a file on hugetlbfs (file size is 200MB == 100 hugepages,) - read()/write() something on it, - call mincore() for first ten pages and printf() the values of *vec - munmap() and unlink() the file on hugetlbfs Without my patch ---------------- $ cat /proc/meminfo| grep "HugePage" HugePages_Total: 1000 HugePages_Free: 1000 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ./leak_mincore vec[0] 0 vec[1] 0 vec[2] 0 vec[3] 0 vec[4] 0 vec[5] 0 vec[6] 0 vec[7] 0 vec[8] 0 vec[9] 0 $ cat /proc/meminfo |grep "HugePage" HugePages_Total: 1000 HugePages_Free: 999 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ls /hugetlbfs/ $ Return values in *vec from mincore() are set to 0, while the hugepage should be in memory, and 1 hugepage is still accounted as used while there is no file on hugetlbfs. With my patch ------------- $ cat /proc/meminfo| grep "HugePage" HugePages_Total: 1000 HugePages_Free: 1000 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ./leak_mincore vec[0] 1 vec[1] 1 vec[2] 1 vec[3] 1 vec[4] 1 vec[5] 1 vec[6] 1 vec[7] 1 vec[8] 1 vec[9] 1 $ cat /proc/meminfo |grep "HugePage" HugePages_Total: 1000 HugePages_Free: 1000 HugePages_Rsvd: 0 HugePages_Surp: 0 $ ls /hugetlbfs/ $ Return value in *vec set to 1 and no memory leaks. [akpm@linux-foundation.org: cleanup] [akpm@linux-foundation.org: build fix] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15hugetlb: abort a hugepage pool resize if a signal is pendingMel Gorman
If a user asks for a hugepage pool resize but specified a large number, the machine can begin trashing. In response, they might hit ctrl-c but signals are ignored and the pool resize continues until it fails an allocation. This can take a considerable amount of time so this patch aborts a pool resize if a signal is pending. Suggested by Dave Hansen. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mlock: replace stale comments in munlock_vma_page()Lee Schermerhorn
Cleanup stale comments on munlock_vma_page(). Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm: remove unevictable_migrate_page functionLee Schermerhorn
unevictable_migrate_page() in mm/internal.h is a relic of the since removed UNEVICTABLE_LRU Kconfig option. This patch removes the function and open codes the test in migrate_page_copy(). Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15hugetlb: acquire the i_mmap_lock before walking the prio_tree to unmap a pageMel Gorman
When the owner of a mapping fails COW because a child process is holding a reference, the children VMAs are walked and the page is unmapped. The i_mmap_lock is taken for the unmapping of the page but not the walking of the prio_tree. In theory, that tree could be changing if the lock is not held. This patch takes the i_mmap_lock properly for the duration of the prio_tree walk. [hugh.dickins@tiscali.co.uk: Spotted the problem in the first place] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm: uncached vma support with writenotifyMagnus Damm
Modify the generic mmap() code to keep the cache attribute in vma->vm_page_prot regardless if writenotify is enabled or not. Without this patch the cache configuration selected by f_op->mmap() is overwritten if writenotify is enabled, making it impossible to keep the vma uncached. Needed by drivers such as drivers/video/sh_mobile_lcdcfb.c which uses deferred io together with uncached memory. Signed-off-by: Magnus Damm <damm@opensource.se> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jaya Kumar <jayakumar.lkml@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15vmscan: simplify codeHuang Shijie
Simplify the code for shrink_inactive_list(). Signed-off-by: Huang Shijie <shijie8@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15vmscan: do not evict inactive pages when skipping an active list scanRik van Riel
In AIM7 runs, recent kernels start swapping out anonymous pages well before they should. This is due to shrink_list falling through to shrink_inactive_list if !inactive_anon_is_low(zone, sc), when all we really wanted to do is pre-age some anonymous pages to give them extra time to be referenced while on the inactive list. The obvious fix is to make sure that shrink_list does not fall through to scanning/reclaiming inactive pages when we called it to scan one of the active lists. This change should be safe because the loop in shrink_zone ensures that we will still shrink the anon and file inactive lists whenever we should. [kosaki.motohiro@jp.fujitsu.com: inactive_file_is_low() should be inactive_anon_is_low()] Reported-by: Larry Woodman <lwoodman@redhat.com> Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tomasz Chmielewski <mangoo@wpkg.org> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm/bootmem.c: properly __init-annotate helper functionsJan Beulich
Signed-off-by: Jan Beulich <jbeulich@novell.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm: simplify try_to_unmap_one()KOSAKI Motohiro
SWAP_MLOCK mean "We marked the page as PG_MLOCK, please move it to unevictable-lru". So, following code is easy confusable. if (vma->vm_flags & VM_LOCKED) { ret = SWAP_MLOCK; goto out_unmap; } Plus, if the VMA doesn't have VM_LOCKED, We don't need to check the needed of calling mlock_vma_page(). Also, add some commentary to try_to_unmap_one(). Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm: fix section mismatch in memory_hotplug.cRakib Mullick
__free_pages_bootmem() is a __meminit function - which has been called from put_pages_bootmem thus causes a section mismatch warning. We were warned by the following warning: LD mm/built-in.o WARNING: mm/built-in.o(.text+0x26b22): Section mismatch in reference from the function put_page_bootmem() to the function .meminit.text:__free_pages_bootmem() The function put_page_bootmem() references the function __meminit __free_pages_bootmem(). This is often because put_page_bootmem lacks a __meminit annotation or the annotation of __free_pages_bootmem is wrong. Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15hugetlb: prevent deadlock in __unmap_hugepage_range() when alloc_huge_page() ↵Larry Woodman
fails hugetlb_fault() takes the mm->page_table_lock spinlock then calls hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an insufficient huge page pool it calls unmap_ref_private() with the mm->page_table_lock held. unmap_ref_private() then calls unmap_hugepage_range() which tries to acquire the mm->page_table_lock. [<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f [<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8 [<ffffffff810935e0>] __lock_acquire+0x956/0xc0e [<ffffffff81093986>] lock_acquire+0xee/0x12e [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff814c348d>] _spin_lock+0x40/0x89 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318 [<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84 [<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4 [<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6 [<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6 [<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9 [<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c [<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427 [<ffffffff81107d0f>] get_user_pages+0x3e/0x54 [<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5 [<ffffffff81160352>] dio_get_page+0x64/0x14a [<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31 [<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e [<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8 [<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528 [<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c [<ffffffff81132842>] do_sync_read+0xf5/0x146 [<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a [<ffffffff81211857>] ? security_file_permission+0x24/0x3a [<ffffffff81132fd8>] vfs_read+0xb5/0x126 [<ffffffff81133f6b>] ? fget_light+0x5e/0xf8 [<ffffffff81133131>] sys_read+0x54/0x8c [<ffffffff81011e42>] system_call_fastpath+0x16/0x1b This can be fixed by dropping the mm->page_table_lock around the call to unmap_ref_private() if alloc_huge_page() fails, its dropped right below in the normal path anyway. However, earlier in the that function, it's also possible to call into the page allocator with the same spinlock held. What this patch does is drop the spinlock before the page allocator is potentially entered. The check for page allocation failure can be made without the page_table_lock as well as the copy of the huge page. Even if the PTE changed while the spinlock was held, the consequence is that a huge page is copied unnecessarily. This resolves both the double taking of the lock and sleeping with the spinlock held. [mel@csn.ul.ie: Cover also the case where process can sleep with spinlock] Signed-off-by: Larry Woodman <lwooman@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15mm: memory_hotplug: make offline_pages() staticAndrew Morton
It has no references outside memory_hotplug.c. Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Andi Kleen <andi@firstfloor.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: remove unswappable max_kernel_pagesHugh Dickins
Now that ksm pages are swappable, and the known holes plugged, remove mention of unswappable kernel pages from KSM documentation and comments. Remove the totalram_pages/4 initialization of max_kernel_pages. In fact, remove max_kernel_pages altogether - we can reinstate it if removal turns out to break someone's script; but if we later want to limit KSM's memory usage, limiting the stable nodes would not be an effective approach. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: memory hotremove migration onlyHugh Dickins
The previous patch enables page migration of ksm pages, but that soon gets into trouble: not surprising, since we're using the ksm page lock to lock operations on its stable_node, but page migration switches the page whose lock is to be used for that. Another layer of locking would fix it, but do we need that yet? Do we actually need page migration of ksm pages? Yes, memory hotremove needs to offline sections of memory: and since we stopped allocating ksm pages with GFP_HIGHUSER, they will tend to be GFP_HIGHUSER_MOVABLE candidates for migration. But KSM is currently unconscious of NUMA issues, happily merging pages from different NUMA nodes: at present the rule must be, not to use MADV_MERGEABLE where you care about NUMA. So no, NUMA page migration of ksm pages does not make sense yet. So, to complete support for ksm swapping we need to make hotremove safe. ksm_memory_callback() take ksm_thread_mutex when MEM_GOING_OFFLINE and release it when MEM_OFFLINE or MEM_CANCEL_OFFLINE. But if mapped pages are freed before migration reaches them, stable_nodes may be left still pointing to struct pages which have been removed from the system: the stable_node needs to identify a page by pfn rather than page pointer, then it can safely prune them when MEM_OFFLINE. And make NUMA migration skip PageKsm pages where it skips PageReserved. But it's only when we reach unmap_and_move() that the page lock is taken and we can be sure that raised pagecount has prevented a PageAnon from being upgraded: so add offlining arg to migrate_pages(), to migrate ksm page when offlining (has sufficient locking) but reject it otherwise. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: rmap_walk to remove_migation_ptesHugh Dickins
A side-effect of making ksm pages swappable is that they have to be placed on the LRUs: which then exposes them to isolate_lru_page() and hence to page migration. Add rmap_walk() for remove_migration_ptes() to use: rmap_walk_anon() and rmap_walk_file() in rmap.c, but rmap_walk_ksm() in ksm.c. Perhaps some consolidation with existing code is possible, but don't attempt that yet (try_to_unmap needs to handle nonlinears, but migration pte removal does not). rmap_walk() is sadly less general than it appears: rmap_walk_anon(), like remove_anon_migration_ptes() which it replaces, avoids calling page_lock_anon_vma(), because that includes a page_mapped() test which fails when all migration ptes are in place. That was valid when NUMA page migration was introduced (holding mmap_sem provided the missing guarantee that anon_vma's slab had not already been destroyed), but I believe not valid in the memory hotremove case added since. For now do the same as before, and consider the best way to fix that unlikely race later on. When fixed, we can probably use rmap_walk() on hwpoisoned ksm pages too: for now, they remain among hwpoison's various exceptions (its PageKsm test comes before the page is locked, but its page_lock_anon_vma fails safely if an anon gets upgraded). Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: mem cgroup charge swapin copyHugh Dickins
But ksm swapping does require one small change in mem cgroup handling. When do_swap_page()'s call to ksm_might_need_to_copy() does indeed substitute a duplicate page to accommodate a different anon_vma (or a the !PageSwapCache check in mem_cgroup_try_charge_swapin(). That was returning success without charging, on the assumption that pte_same() would fail after, which is not the case here. Originally I proposed that success, so that an unshrinkable mem cgroup at its limit would not fail unnecessarily; but that's a minor point, and there are plenty of other places where we may fail an overallocation which might later prove unnecessary. So just go ahead and do what all the other exceptions do: proceed to charge current mm. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: share anon page without allocatingHugh Dickins
When ksm pages were unswappable, it made no sense to include them in mem cgroup accounting; but now that they are swappable (although I see no strict logical connection) the principle of least surprise implies that they should be accounted (with the usual dissatisfaction, that a shared page is accounted to only one of the cgroups using it). This patch was intended to add mem cgroup accounting where necessary; but turned inside out, it now avoids allocating a ksm page, instead upgrading an anon page to ksm - which brings its existing mem cgroup accounting with it. Thus mem cgroups don't appear in the patch at all. This upgrade from PageAnon to PageKsm takes place under page lock (via a somewhat hacky NULL kpage interface), and audit showed only one place which needed to cope with the race - page_referenced() is sometimes used without page lock, so page_lock_anon_vma() needs an ACCESS_ONCE() to be sure of getting anon_vma and flags together (no problem if the page goes ksm an instant after, the integrity of that anon_vma list is unaffected). Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: take keyhole reference to pageHugh Dickins
There's a lamentable flaw in KSM swapping: the stable_node holds a reference to the ksm page, so the page to be freed cannot actually be freed until ksmd works its way around to removing the last rmap_item from its stable_node. Which in some configurations may take minutes: not quite responsive enough for memory reclaim. And we don't want to twist KSM and its locking more tightly into the rest of mm. What a pity. But although the stable_node needs to hold a pointer to the ksm page, does it actually need to raise the reference count of that page? No. It would need to do so if struct pages were ordinary kmalloc'ed objects; but they are more stable than that, and reused in particular ways according to particular rules. Access to stable_node from its pointer in struct page is no problem, so long as we never free a stable_node before the ksm page itself has been freed. Access to struct page from its pointer in stable_node: reintroduce get_ksm_page(), and let that peep out through its keyhole (the stable_node pointer to ksm page), to see if that struct page still holds the right key to open it (the ksm page mapping pointer back to this stable_node). This relies upon the established way in which free_hot_cold_page() sets an anon (including ksm) page->mapping to NULL; and relies upon no other user of a struct page to put something which looks like the original stable_node pointer (with two low bits also set) into page->mapping. It also needs get_page_unless_zero() technique pioneered by speculative pagecache; and uses rcu_read_lock() to keep the guarantees that gives. There are several drivers which put pointers of their own into page-> mapping; but none of those could coincide with our stable_node pointers, since KSM won't free a stable_node until it sees that the page has gone. The only problem case found is the pagetable spinlock USE_SPLIT_PTLOCKS places in struct page (my own abuse): to accommodate GENERIC_LOCKBREAK's break_lock on 32-bit, that spans both page->private and page->mapping. Since break_lock is only 0 or 1, again no confusion for get_ksm_page(). But what of DEBUG_SPINLOCK on 64-bit bigendian? When owner_cpu is 3 (matching PageKsm low bits), it might see 0xdead4ead00000003 in page-> mapping, which might coincide? We could get around that by... but a better answer is to suppress USE_SPLIT_PTLOCKS when DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC, to stop bloating sizeof(struct page) in their case - already proposed in an earlier mm/Kconfig patch. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: hold anon_vma in rmap_itemHugh Dickins
For full functionality, page_referenced_one() and try_to_unmap_one() need to know the vma: to pass vma down to arch-dependent flushes, or to observe VM_LOCKED or VM_EXEC. But KSM keeps no record of vma: nor can it, since vmas get split and merged without its knowledge. Instead, note page's anon_vma in its rmap_item when adding to stable tree: all the vmas which might map that page are listed by its anon_vma. page_referenced_ksm() and try_to_unmap_ksm() then traverse the anon_vma, first to find the probable vma, that which matches rmap_item's mm; but if that is not enough to locate all instances, traverse again to try the others. This catches those occasions when fork has duplicated a pte of a ksm page, but ksmd has not yet come around to assign it an rmap_item. But each rmap_item in the stable tree which refers to an anon_vma needs to take a reference to it. Andrea's anon_vma design cleverly avoided a reference count (an anon_vma was free when its list of vmas was empty), but KSM now needs to add that. Is a 32-bit count sufficient? I believe so - the anon_vma is only free when both count is 0 and list is empty. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15ksm: let shared pages be swappableHugh Dickins
Initial implementation for swapping out KSM's shared pages: add page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when faced with a PageKsm page. Most of what's needed can be got from the rmap_items listed from the stable_node of the ksm page, without discovering the actual vma: so in this patch just fake up a struct vma for page_referenced_one() or try_to_unmap_one(), then refine that in the next patch. Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been implicit there (being only set with VM_SHARED, already excluded), but let's make it explicit, to help justify the lack of nonlinear unmap. Rely on the page lock to protect against concurrent modifications to that page's node of the stable tree. The awkward part is not swapout but swapin: do_swap_page() and page_add_anon_rmap() now have to allow for new possibilities - perhaps a ksm page still in swapcache, perhaps a swapcache page associated with one location in one anon_vma now needed for another location or anon_vma. (And the vma might even be no longer VM_MERGEABLE when that happens.) ksm_might_need_to_copy() checks for that case, and supplies a duplicate page when necessary, simply leaving it to a subsequent pass of ksmd to rediscover the identity and merge them back into one ksm page. Disappointingly primitive: but the alternative would have to accumulate unswappable info about the swapped out ksm pages, limiting swappability. Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the particular case it was handling, so just use it instead. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>