aboutsummaryrefslogtreecommitdiff
path: root/net/xfrm/xfrm_user.c
AgeCommit message (Collapse)Author
2005-05-19[IPSEC]: Verify key payload in verify_one_algoHerbert Xu
We need to verify that the payload contains enough data so that attach_one_algo can copy alg_key_len bits from the payload. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-05-19[IPSEC]: Fixed alg_key_len usage in attach_one_algoHerbert Xu
The variable alg_key_len is in bits and not bytes. The function attach_one_algo is currently using it as if it were in bytes. This causes it to read memory which may not be there. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-05-03[XFRM/RTNETLINK]: Decrement qlen properly in {xfrm_,rt}netlink_rcv().David S. Miller
If we free up a partially processed packet because it's skb->len dropped to zero, we need to decrement qlen because we are dropping out of the top-level loop so it will do the decrement for us. Spotted by Herbert Xu. Signed-off-by: David S. Miller <davem@davemloft.net>
2005-05-03[NETLINK]: Fix infinite loops in synchronous netlink changes.David S. Miller
The qlen should continue to decrement, even if we pop partially processed SKBs back onto the receive queue. Signed-off-by: David S. Miller <davem@davemloft.net>
2005-05-03[NETLINK]: Synchronous message processing.Herbert Xu
Let's recap the problem. The current asynchronous netlink kernel message processing is vulnerable to these attacks: 1) Hit and run: Attacker sends one or more messages and then exits before they're processed. This may confuse/disable the next netlink user that gets the netlink address of the attacker since it may receive the responses to the attacker's messages. Proposed solutions: a) Synchronous processing. b) Stream mode socket. c) Restrict/prohibit binding. 2) Starvation: Because various netlink rcv functions were written to not return until all messages have been processed on a socket, it is possible for these functions to execute for an arbitrarily long period of time. If this is successfully exploited it could also be used to hold rtnl forever. Proposed solutions: a) Synchronous processing. b) Stream mode socket. Firstly let's cross off solution c). It only solves the first problem and it has user-visible impacts. In particular, it'll break user space applications that expect to bind or communicate with specific netlink addresses (pid's). So we're left with a choice of synchronous processing versus SOCK_STREAM for netlink. For the moment I'm sticking with the synchronous approach as suggested by Alexey since it's simpler and I'd rather spend my time working on other things. However, it does have a number of deficiencies compared to the stream mode solution: 1) User-space to user-space netlink communication is still vulnerable. 2) Inefficient use of resources. This is especially true for rtnetlink since the lock is shared with other users such as networking drivers. The latter could hold the rtnl while communicating with hardware which causes the rtnetlink user to wait when it could be doing other things. 3) It is still possible to DoS all netlink users by flooding the kernel netlink receive queue. The attacker simply fills the receive socket with a single netlink message that fills up the entire queue. The attacker then continues to call sendmsg with the same message in a loop. Point 3) can be countered by retransmissions in user-space code, however it is pretty messy. In light of these problems (in particular, point 3), we should implement stream mode netlink at some point. In the mean time, here is a patch that implements synchronous processing. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-05-03[XFRM]: Cleanup xfrm_msg_min and xfrm_dispatchThomas Graf
Converts xfrm_msg_min and xfrm_dispatch to use c99 designated initializers to make greping a little bit easier. Also replaces two hardcoded message type with meaningful names. Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!