aboutsummaryrefslogtreecommitdiff
path: root/security/keys/request_key_auth.c
AgeCommit message (Collapse)Author
2005-10-08[PATCH] Keys: Add request-key process documentationDavid Howells
The attached patch adds documentation for the process by which request-key works, including how it permits helper processes to gain access to the requestor's keyrings. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-08[PATCH] key: plug request_key_auth memleakDavid Howells
Plug request_key_auth memleak. This can be triggered by unprivileged users, so is local DoS. Signed-off-by: Chris Wright <chrisw@osdl.org> Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-28[PATCH] Keys: Add possessor permissions to keys [try #3]David Howells
The attached patch adds extra permission grants to keys for the possessor of a key in addition to the owner, group and other permissions bits. This makes SUID binaries easier to support without going as far as labelling keys and key targets using the LSM facilities. This patch adds a second "pointer type" to key structures (struct key_ref *) that can have the bottom bit of the address set to indicate the possession of a key. This is propagated through searches from the keyring to the discovered key. It has been made a separate type so that the compiler can spot attempts to dereference a potentially incorrect pointer. The "possession" attribute can't be attached to a key structure directly as it's not an intrinsic property of a key. Pointers to keys have been replaced with struct key_ref *'s wherever possession information needs to be passed through. This does assume that the bottom bit of the pointer will always be zero on return from kmem_cache_alloc(). The key reference type has been made into a typedef so that at least it can be located in the sources, even though it's basically a pointer to an undefined type. I've also renamed the accessor functions to be more useful, and all reference variables should now end in "_ref". Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24[PATCH] Keys: Make request-key create an authorisation keyDavid Howells
The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>