From 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Sat, 16 Apr 2005 15:20:36 -0700 Subject: Linux-2.6.12-rc2 Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip! --- Documentation/highuid.txt | 79 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 79 insertions(+) create mode 100644 Documentation/highuid.txt (limited to 'Documentation/highuid.txt') diff --git a/Documentation/highuid.txt b/Documentation/highuid.txt new file mode 100644 index 00000000000..2c33926b909 --- /dev/null +++ b/Documentation/highuid.txt @@ -0,0 +1,79 @@ +Notes on the change from 16-bit UIDs to 32-bit UIDs: + +- kernel code MUST take into account __kernel_uid_t and __kernel_uid32_t + when communicating between user and kernel space in an ioctl or data + structure. + +- kernel code should use uid_t and gid_t in kernel-private structures and + code. + +What's left to be done for 32-bit UIDs on all Linux architectures: + +- Disk quotas have an interesting limitation that is not related to the + maximum UID/GID. They are limited by the maximum file size on the + underlying filesystem, because quota records are written at offsets + corresponding to the UID in question. + Further investigation is needed to see if the quota system can cope + properly with huge UIDs. If it can deal with 64-bit file offsets on all + architectures, this should not be a problem. + +- Decide whether or not to keep backwards compatibility with the system + accounting file, or if we should break it as the comments suggest + (currently, the old 16-bit UID and GID are still written to disk, and + part of the former pad space is used to store separate 32-bit UID and + GID) + +- Need to validate that OS emulation calls the 16-bit UID + compatibility syscalls, if the OS being emulated used 16-bit UIDs, or + uses the 32-bit UID system calls properly otherwise. + + This affects at least: + SunOS emulation + Solaris emulation + iBCS on Intel + + sparc32 emulation on sparc64 + (need to support whatever new 32-bit UID system calls are added to + sparc32) + +- Validate that all filesystems behave properly. + + At present, 32-bit UIDs _should_ work for: + ext2 + ufs + isofs + nfs + coda + udf + + Ioctl() fixups have been made for: + ncpfs + smbfs + + Filesystems with simple fixups to prevent 16-bit UID wraparound: + minix + sysv + qnx4 + + Other filesystems have not been checked yet. + +- The ncpfs and smpfs filesystems can not presently use 32-bit UIDs in + all ioctl()s. Some new ioctl()s have been added with 32-bit UIDs, but + more are needed. (as well as new user<->kernel data structures) + +- The ELF core dump format only supports 16-bit UIDs on arm, i386, m68k, + sh, and sparc32. Fixing this is probably not that important, but would + require adding a new ELF section. + +- The ioctl()s used to control the in-kernel NFS server only support + 16-bit UIDs on arm, i386, m68k, sh, and sparc32. + +- make sure that the UID mapping feature of AX25 networking works properly + (it should be safe because it's always used a 32-bit integer to + communicate between user and kernel) + + +Chris Wing +wingc@umich.edu + +last updated: January 11, 2000 -- cgit v1.2.3