/* * linux/arch/alpha/kernel/sys_mikasa.c * * Copyright (C) 1995 David A Rusling * Copyright (C) 1996 Jay A Estabrook * Copyright (C) 1998, 1999 Richard Henderson * * Code supporting the MIKASA (AlphaServer 1000). */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/bitops.h> #include <asm/ptrace.h> #include <asm/system.h> #include <asm/dma.h> #include <asm/irq.h> #include <asm/mmu_context.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/core_apecs.h> #include <asm/core_cia.h> #include <asm/tlbflush.h> #include "proto.h" #include "irq_impl.h" #include "pci_impl.h" #include "machvec_impl.h" /* Note mask bit is true for ENABLED irqs. */ static int cached_irq_mask; static inline void mikasa_update_irq_hw(int mask) { outw(mask, 0x536); } static inline void mikasa_enable_irq(unsigned int irq) { mikasa_update_irq_hw(cached_irq_mask |= 1 << (irq - 16)); } static void mikasa_disable_irq(unsigned int irq) { mikasa_update_irq_hw(cached_irq_mask &= ~(1 << (irq - 16))); } static unsigned int mikasa_startup_irq(unsigned int irq) { mikasa_enable_irq(irq); return 0; } static void mikasa_end_irq(unsigned int irq) { if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS))) mikasa_enable_irq(irq); } static struct hw_interrupt_type mikasa_irq_type = { .typename = "MIKASA", .startup = mikasa_startup_irq, .shutdown = mikasa_disable_irq, .enable = mikasa_enable_irq, .disable = mikasa_disable_irq, .ack = mikasa_disable_irq, .end = mikasa_end_irq, }; static void mikasa_device_interrupt(unsigned long vector) { unsigned long pld; unsigned int i; /* Read the interrupt summary registers */ pld = (((~inw(0x534) & 0x0000ffffUL) << 16) | (((unsigned long) inb(0xa0)) << 8) | inb(0x20)); /* * Now for every possible bit set, work through them and call * the appropriate interrupt handler. */ while (pld) { i = ffz(~pld); pld &= pld - 1; /* clear least bit set */ if (i < 16) { isa_device_interrupt(vector); } else { handle_irq(i); } } } static void __init mikasa_init_irq(void) { long i; if (alpha_using_srm) alpha_mv.device_interrupt = srm_device_interrupt; mikasa_update_irq_hw(0); for (i = 16; i < 32; ++i) { irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL; irq_desc[i].chip = &mikasa_irq_type; } init_i8259a_irqs(); common_init_isa_dma(); } /* * PCI Fixup configuration. * * Summary @ 0x536: * Bit Meaning * 0 Interrupt Line A from slot 0 * 1 Interrupt Line B from slot 0 * 2 Interrupt Line C from slot 0 * 3 Interrupt Line D from slot 0 * 4 Interrupt Line A from slot 1 * 5 Interrupt line B from slot 1 * 6 Interrupt Line C from slot 1 * 7 Interrupt Line D from slot 1 * 8 Interrupt Line A from slot 2 * 9 Interrupt Line B from slot 2 *10 Interrupt Line C from slot 2 *11 Interrupt Line D from slot 2 *12 NCR 810 SCSI *13 Power Supply Fail *14 Temperature Warn *15 Reserved * * The device to slot mapping looks like: * * Slot Device * 6 NCR SCSI controller * 7 Intel PCI-EISA bridge chip * 11 PCI on board slot 0 * 12 PCI on board slot 1 * 13 PCI on board slot 2 * * * This two layered interrupt approach means that we allocate IRQ 16 and * above for PCI interrupts. The IRQ relates to which bit the interrupt * comes in on. This makes interrupt processing much easier. */ static int __init mikasa_map_irq(struct pci_dev *dev, u8 slot, u8 pin) { static char irq_tab[8][5] __initdata = { /*INT INTA INTB INTC INTD */ {16+12, 16+12, 16+12, 16+12, 16+12}, /* IdSel 17, SCSI */ { -1, -1, -1, -1, -1}, /* IdSel 18, PCEB */ { -1, -1, -1, -1, -1}, /* IdSel 19, ???? */ { -1, -1, -1, -1, -1}, /* IdSel 20, ???? */ { -1, -1, -1, -1, -1}, /* IdSel 21, ???? */ { 16+0, 16+0, 16+1, 16+2, 16+3}, /* IdSel 22, slot 0 */ { 16+4, 16+4, 16+5, 16+6, 16+7}, /* IdSel 23, slot 1 */ { 16+8, 16+8, 16+9, 16+10, 16+11}, /* IdSel 24, slot 2 */ }; const long min_idsel = 6, max_idsel = 13, irqs_per_slot = 5; return COMMON_TABLE_LOOKUP; } #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO) static void mikasa_apecs_machine_check(unsigned long vector, unsigned long la_ptr) { #define MCHK_NO_DEVSEL 0x205U #define MCHK_NO_TABT 0x204U struct el_common *mchk_header; unsigned int code; mchk_header = (struct el_common *)la_ptr; /* Clear the error before any reporting. */ mb(); mb(); /* magic */ draina(); apecs_pci_clr_err(); wrmces(0x7); mb(); code = mchk_header->code; process_mcheck_info(vector, la_ptr, "MIKASA APECS", (mcheck_expected(0) && (code == MCHK_NO_DEVSEL || code == MCHK_NO_TABT))); } #endif /* * The System Vector */ #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO) struct alpha_machine_vector mikasa_mv __initmv = { .vector_name = "Mikasa", DO_EV4_MMU, DO_DEFAULT_RTC, DO_APECS_IO, .machine_check = mikasa_apecs_machine_check, .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, .min_io_address = DEFAULT_IO_BASE, .min_mem_address = APECS_AND_LCA_DEFAULT_MEM_BASE, .nr_irqs = 32, .device_interrupt = mikasa_device_interrupt, .init_arch = apecs_init_arch, .init_irq = mikasa_init_irq, .init_rtc = common_init_rtc, .init_pci = common_init_pci, .pci_map_irq = mikasa_map_irq, .pci_swizzle = common_swizzle, }; ALIAS_MV(mikasa) #endif #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_PRIMO) struct alpha_machine_vector mikasa_primo_mv __initmv = { .vector_name = "Mikasa-Primo", DO_EV5_MMU, DO_DEFAULT_RTC, DO_CIA_IO, .machine_check = cia_machine_check, .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, .min_io_address = DEFAULT_IO_BASE, .min_mem_address = CIA_DEFAULT_MEM_BASE, .nr_irqs = 32, .device_interrupt = mikasa_device_interrupt, .init_arch = cia_init_arch, .init_irq = mikasa_init_irq, .init_rtc = common_init_rtc, .init_pci = cia_init_pci, .kill_arch = cia_kill_arch, .pci_map_irq = mikasa_map_irq, .pci_swizzle = common_swizzle, }; ALIAS_MV(mikasa_primo) #endif