/* * linux/arch/alpha/mm/fault.c * * Copyright (C) 1995 Linus Torvalds */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <asm/io.h> #define __EXTERN_INLINE inline #include <asm/mmu_context.h> #include <asm/tlbflush.h> #undef __EXTERN_INLINE #include <linux/signal.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/module.h> #include <asm/system.h> #include <asm/uaccess.h> extern void die_if_kernel(char *,struct pt_regs *,long, unsigned long *); /* * Force a new ASN for a task. */ #ifndef CONFIG_SMP unsigned long last_asn = ASN_FIRST_VERSION; #endif void __load_new_mm_context(struct mm_struct *next_mm) { unsigned long mmc; struct pcb_struct *pcb; mmc = __get_new_mm_context(next_mm, smp_processor_id()); next_mm->context[smp_processor_id()] = mmc; pcb = ¤t_thread_info()->pcb; pcb->asn = mmc & HARDWARE_ASN_MASK; pcb->ptbr = ((unsigned long) next_mm->pgd - IDENT_ADDR) >> PAGE_SHIFT; __reload_thread(pcb); } /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to handle_mm_fault(). * * mmcsr: * 0 = translation not valid * 1 = access violation * 2 = fault-on-read * 3 = fault-on-execute * 4 = fault-on-write * * cause: * -1 = instruction fetch * 0 = load * 1 = store * * Registers $9 through $15 are saved in a block just prior to `regs' and * are saved and restored around the call to allow exception code to * modify them. */ /* Macro for exception fixup code to access integer registers. */ #define dpf_reg(r) \ (((unsigned long *)regs)[(r) <= 8 ? (r) : (r) <= 15 ? (r)-16 : \ (r) <= 18 ? (r)+8 : (r)-10]) asmlinkage void do_page_fault(unsigned long address, unsigned long mmcsr, long cause, struct pt_regs *regs) { struct vm_area_struct * vma; struct mm_struct *mm = current->mm; const struct exception_table_entry *fixup; int fault, si_code = SEGV_MAPERR; siginfo_t info; /* As of EV6, a load into $31/$f31 is a prefetch, and never faults (or is suppressed by the PALcode). Support that for older CPUs by ignoring such an instruction. */ if (cause == 0) { unsigned int insn; __get_user(insn, (unsigned int __user *)regs->pc); if ((insn >> 21 & 0x1f) == 0x1f && /* ldq ldl ldt lds ldg ldf ldwu ldbu */ (1ul << (insn >> 26) & 0x30f00001400ul)) { regs->pc += 4; return; } } /* If we're in an interrupt context, or have no user context, we must not take the fault. */ if (!mm || in_atomic()) goto no_context; #ifdef CONFIG_ALPHA_LARGE_VMALLOC if (address >= TASK_SIZE) goto vmalloc_fault; #endif down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* Ok, we have a good vm_area for this memory access, so we can handle it. */ good_area: si_code = SEGV_ACCERR; if (cause < 0) { if (!(vma->vm_flags & VM_EXEC)) goto bad_area; } else if (!cause) { /* Allow reads even for write-only mappings */ if (!(vma->vm_flags & (VM_READ | VM_WRITE))) goto bad_area; } else { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } survive: /* If for any reason at all we couldn't handle the fault, make sure we exit gracefully rather than endlessly redo the fault. */ fault = handle_mm_fault(mm, vma, address, cause > 0); up_read(&mm->mmap_sem); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (fault & VM_FAULT_MAJOR) current->maj_flt++; else current->min_flt++; return; /* Something tried to access memory that isn't in our memory map. Fix it, but check if it's kernel or user first. */ bad_area: up_read(&mm->mmap_sem); if (user_mode(regs)) goto do_sigsegv; no_context: /* Are we prepared to handle this fault as an exception? */ if ((fixup = search_exception_tables(regs->pc)) != 0) { unsigned long newpc; newpc = fixup_exception(dpf_reg, fixup, regs->pc); regs->pc = newpc; return; } /* Oops. The kernel tried to access some bad page. We'll have to terminate things with extreme prejudice. */ printk(KERN_ALERT "Unable to handle kernel paging request at " "virtual address %016lx\n", address); die_if_kernel("Oops", regs, cause, (unsigned long*)regs - 16); do_exit(SIGKILL); /* We ran out of memory, or some other thing happened to us that made us unable to handle the page fault gracefully. */ out_of_memory: if (is_global_init(current)) { yield(); down_read(&mm->mmap_sem); goto survive; } printk(KERN_ALERT "VM: killing process %s(%d)\n", current->comm, task_pid_nr(current)); if (!user_mode(regs)) goto no_context; do_group_exit(SIGKILL); do_sigbus: /* Send a sigbus, regardless of whether we were in kernel or user mode. */ info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *) address; force_sig_info(SIGBUS, &info, current); if (!user_mode(regs)) goto no_context; return; do_sigsegv: info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = si_code; info.si_addr = (void __user *) address; force_sig_info(SIGSEGV, &info, current); return; #ifdef CONFIG_ALPHA_LARGE_VMALLOC vmalloc_fault: if (user_mode(regs)) goto do_sigsegv; else { /* Synchronize this task's top level page-table with the "reference" page table from init. */ long index = pgd_index(address); pgd_t *pgd, *pgd_k; pgd = current->active_mm->pgd + index; pgd_k = swapper_pg_dir + index; if (!pgd_present(*pgd) && pgd_present(*pgd_k)) { pgd_val(*pgd) = pgd_val(*pgd_k); return; } goto no_context; } #endif }