/* * linux/arch/arm/mm/mm-armv.c * * Copyright (C) 1998-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Page table sludge for ARM v3 and v4 processor architectures. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define CPOLICY_UNCACHED 0 #define CPOLICY_BUFFERED 1 #define CPOLICY_WRITETHROUGH 2 #define CPOLICY_WRITEBACK 3 #define CPOLICY_WRITEALLOC 4 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; static unsigned int ecc_mask __initdata = 0; pgprot_t pgprot_kernel; EXPORT_SYMBOL(pgprot_kernel); pmd_t *top_pmd; struct cachepolicy { const char policy[16]; unsigned int cr_mask; unsigned int pmd; unsigned int pte; }; static struct cachepolicy cache_policies[] __initdata = { { .policy = "uncached", .cr_mask = CR_W|CR_C, .pmd = PMD_SECT_UNCACHED, .pte = 0, }, { .policy = "buffered", .cr_mask = CR_C, .pmd = PMD_SECT_BUFFERED, .pte = PTE_BUFFERABLE, }, { .policy = "writethrough", .cr_mask = 0, .pmd = PMD_SECT_WT, .pte = PTE_CACHEABLE, }, { .policy = "writeback", .cr_mask = 0, .pmd = PMD_SECT_WB, .pte = PTE_BUFFERABLE|PTE_CACHEABLE, }, { .policy = "writealloc", .cr_mask = 0, .pmd = PMD_SECT_WBWA, .pte = PTE_BUFFERABLE|PTE_CACHEABLE, } }; /* * These are useful for identifing cache coherency * problems by allowing the cache or the cache and * writebuffer to be turned off. (Note: the write * buffer should not be on and the cache off). */ static void __init early_cachepolicy(char **p) { int i; for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { int len = strlen(cache_policies[i].policy); if (memcmp(*p, cache_policies[i].policy, len) == 0) { cachepolicy = i; cr_alignment &= ~cache_policies[i].cr_mask; cr_no_alignment &= ~cache_policies[i].cr_mask; *p += len; break; } } if (i == ARRAY_SIZE(cache_policies)) printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); flush_cache_all(); set_cr(cr_alignment); } static void __init early_nocache(char **__unused) { char *p = "buffered"; printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); early_cachepolicy(&p); } static void __init early_nowrite(char **__unused) { char *p = "uncached"; printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); early_cachepolicy(&p); } static void __init early_ecc(char **p) { if (memcmp(*p, "on", 2) == 0) { ecc_mask = PMD_PROTECTION; *p += 2; } else if (memcmp(*p, "off", 3) == 0) { ecc_mask = 0; *p += 3; } } __early_param("nocache", early_nocache); __early_param("nowb", early_nowrite); __early_param("cachepolicy=", early_cachepolicy); __early_param("ecc=", early_ecc); static int __init noalign_setup(char *__unused) { cr_alignment &= ~CR_A; cr_no_alignment &= ~CR_A; set_cr(cr_alignment); return 1; } __setup("noalign", noalign_setup); #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD) static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt) { return pmd_offset(pgd, virt); } static inline pmd_t *pmd_off_k(unsigned long virt) { return pmd_off(pgd_offset_k(virt), virt); } /* * need to get a 16k page for level 1 */ pgd_t *get_pgd_slow(struct mm_struct *mm) { pgd_t *new_pgd, *init_pgd; pmd_t *new_pmd, *init_pmd; pte_t *new_pte, *init_pte; new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2); if (!new_pgd) goto no_pgd; memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t)); /* * Copy over the kernel and IO PGD entries */ init_pgd = pgd_offset_k(0); memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR, (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t)); clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t)); if (!vectors_high()) { /* * This lock is here just to satisfy pmd_alloc and pte_lock */ spin_lock(&mm->page_table_lock); /* * On ARM, first page must always be allocated since it * contains the machine vectors. */ new_pmd = pmd_alloc(mm, new_pgd, 0); if (!new_pmd) goto no_pmd; new_pte = pte_alloc_map(mm, new_pmd, 0); if (!new_pte) goto no_pte; init_pmd = pmd_offset(init_pgd, 0); init_pte = pte_offset_map_nested(init_pmd, 0); set_pte(new_pte, *init_pte); pte_unmap_nested(init_pte); pte_unmap(new_pte); spin_unlock(&mm->page_table_lock); } return new_pgd; no_pte: spin_unlock(&mm->page_table_lock); pmd_free(new_pmd); free_pages((unsigned long)new_pgd, 2); return NULL; no_pmd: spin_unlock(&mm->page_table_lock); free_pages((unsigned long)new_pgd, 2); return NULL; no_pgd: return NULL; } void free_pgd_slow(pgd_t *pgd) { pmd_t *pmd; struct page *pte; if (!pgd) return; /* pgd is always present and good */ pmd = pmd_off(pgd, 0); if (pmd_none(*pmd)) goto free; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); goto free; } pte = pmd_page(*pmd); pmd_clear(pmd); dec_page_state(nr_page_table_pages); pte_free(pte); pmd_free(pmd); free: free_pages((unsigned long) pgd, 2); } /* * Create a SECTION PGD between VIRT and PHYS in domain * DOMAIN with protection PROT. This operates on half- * pgdir entry increments. */ static inline void alloc_init_section(unsigned long virt, unsigned long phys, int prot) { pmd_t *pmdp = pmd_off_k(virt); if (virt & (1 << 20)) pmdp++; *pmdp = __pmd(phys | prot); flush_pmd_entry(pmdp); } /* * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT */ static inline void alloc_init_supersection(unsigned long virt, unsigned long phys, int prot) { int i; for (i = 0; i < 16; i += 1) { alloc_init_section(virt, phys & SUPERSECTION_MASK, prot | PMD_SECT_SUPER); virt += (PGDIR_SIZE / 2); phys += (PGDIR_SIZE / 2); } } /* * Add a PAGE mapping between VIRT and PHYS in domain * DOMAIN with protection PROT. Note that due to the * way we map the PTEs, we must allocate two PTE_SIZE'd * blocks - one for the Linux pte table, and one for * the hardware pte table. */ static inline void alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot) { pmd_t *pmdp = pmd_off_k(virt); pte_t *ptep; if (pmd_none(*pmdp)) { unsigned long pmdval; ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); pmdval = __pa(ptep) | prot_l1; pmdp[0] = __pmd(pmdval); pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t)); flush_pmd_entry(pmdp); } ptep = pte_offset_kernel(pmdp, virt); set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); } /* * Clear any PGD mapping. On a two-level page table system, * the clearance is done by the middle-level functions (pmd) * rather than the top-level (pgd) functions. */ static inline void clear_mapping(unsigned long virt) { pmd_clear(pmd_off_k(virt)); } struct mem_types { unsigned int prot_pte; unsigned int prot_l1; unsigned int prot_sect; unsigned int domain; }; static struct mem_types mem_types[] __initdata = { [MT_DEVICE] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_WRITE, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | PMD_SECT_AP_WRITE, .domain = DOMAIN_IO, }, [MT_CACHECLEAN] = { .prot_sect = PMD_TYPE_SECT, .domain = DOMAIN_KERNEL, }, [MT_MINICLEAN] = { .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE, .domain = DOMAIN_KERNEL, }, [MT_LOW_VECTORS] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_EXEC, .prot_l1 = PMD_TYPE_TABLE, .domain = DOMAIN_USER, }, [MT_HIGH_VECTORS] = { .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_USER | L_PTE_EXEC, .prot_l1 = PMD_TYPE_TABLE, .domain = DOMAIN_USER, }, [MT_MEMORY] = { .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, .domain = DOMAIN_KERNEL, }, [MT_ROM] = { .prot_sect = PMD_TYPE_SECT, .domain = DOMAIN_KERNEL, }, [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */ .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_WRITE, .prot_l1 = PMD_TYPE_TABLE, .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE | PMD_SECT_TEX(1), .domain = DOMAIN_IO, } }; /* * Adjust the PMD section entries according to the CPU in use. */ static void __init build_mem_type_table(void) { struct cachepolicy *cp; unsigned int cr = get_cr(); int cpu_arch = cpu_architecture(); int i; #if defined(CONFIG_CPU_DCACHE_DISABLE) if (cachepolicy > CPOLICY_BUFFERED) cachepolicy = CPOLICY_BUFFERED; #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) if (cachepolicy > CPOLICY_WRITETHROUGH) cachepolicy = CPOLICY_WRITETHROUGH; #endif if (cpu_arch < CPU_ARCH_ARMv5) { if (cachepolicy >= CPOLICY_WRITEALLOC) cachepolicy = CPOLICY_WRITEBACK; ecc_mask = 0; } if (cpu_arch <= CPU_ARCH_ARMv5) { for (i = 0; i < ARRAY_SIZE(mem_types); i++) { if (mem_types[i].prot_l1) mem_types[i].prot_l1 |= PMD_BIT4; if (mem_types[i].prot_sect) mem_types[i].prot_sect |= PMD_BIT4; } } /* * ARMv6 and above have extended page tables. */ if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { /* * bit 4 becomes XN which we must clear for the * kernel memory mapping. */ mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4; mem_types[MT_ROM].prot_sect &= ~PMD_BIT4; /* * Mark cache clean areas and XIP ROM read only * from SVC mode and no access from userspace. */ mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; } cp = &cache_policies[cachepolicy]; if (cpu_arch >= CPU_ARCH_ARMv5) { mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; } else { mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte; mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte; mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1); } mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; mem_types[MT_ROM].prot_sect |= cp->pmd; for (i = 0; i < 16; i++) { unsigned long v = pgprot_val(protection_map[i]); v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte; protection_map[i] = __pgprot(v); } pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | L_PTE_WRITE | L_PTE_EXEC | cp->pte); switch (cp->pmd) { case PMD_SECT_WT: mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; break; case PMD_SECT_WB: case PMD_SECT_WBWA: mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; break; } printk("Memory policy: ECC %sabled, Data cache %s\n", ecc_mask ? "en" : "dis", cp->policy); } #define vectors_base() (vectors_high() ? 0xffff0000 : 0) /* * Create the page directory entries and any necessary * page tables for the mapping specified by `md'. We * are able to cope here with varying sizes and address * offsets, and we take full advantage of sections and * supersections. */ static void __init create_mapping(struct map_desc *md) { unsigned long virt, length; int prot_sect, prot_l1, domain; pgprot_t prot_pte; long off; if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { printk(KERN_WARNING "BUG: not creating mapping for " "0x%08lx at 0x%08lx in user region\n", md->physical, md->virtual); return; } if ((md->type == MT_DEVICE || md->type == MT_ROM) && md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx " "overlaps vmalloc space\n", md->physical, md->virtual); } domain = mem_types[md->type].domain; prot_pte = __pgprot(mem_types[md->type].prot_pte); prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain); prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain); virt = md->virtual; off = md->physical - virt; length = md->length; if (mem_types[md->type].prot_l1 == 0 && (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) { printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " "be mapped using pages, ignoring.\n", md->physical, md->virtual); return; } while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) { alloc_init_page(virt, virt + off, prot_l1, prot_pte); virt += PAGE_SIZE; length -= PAGE_SIZE; } /* N.B. ARMv6 supersections are only defined to work with domain 0. * Since domain assignments can in fact be arbitrary, the * 'domain == 0' check below is required to insure that ARMv6 * supersections are only allocated for domain 0 regardless * of the actual domain assignments in use. */ if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) { /* Align to supersection boundary */ while ((virt & ~SUPERSECTION_MASK || (virt + off) & ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) { alloc_init_section(virt, virt + off, prot_sect); virt += (PGDIR_SIZE / 2); length -= (PGDIR_SIZE / 2); } while (length >= SUPERSECTION_SIZE) { alloc_init_supersection(virt, virt + off, prot_sect); virt += SUPERSECTION_SIZE; length -= SUPERSECTION_SIZE; } } /* * A section mapping covers half a "pgdir" entry. */ while (length >= (PGDIR_SIZE / 2)) { alloc_init_section(virt, virt + off, prot_sect); virt += (PGDIR_SIZE / 2); length -= (PGDIR_SIZE / 2); } while (length >= PAGE_SIZE) { alloc_init_page(virt, virt + off, prot_l1, prot_pte); virt += PAGE_SIZE; length -= PAGE_SIZE; } } /* * In order to soft-boot, we need to insert a 1:1 mapping in place of * the user-mode pages. This will then ensure that we have predictable * results when turning the mmu off */ void setup_mm_for_reboot(char mode) { unsigned long pmdval; pgd_t *pgd; pmd_t *pmd; int i; int cpu_arch = cpu_architecture(); if (current->mm && current->mm->pgd) pgd = current->mm->pgd; else pgd = init_mm.pgd; for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) { pmdval = (i << PGDIR_SHIFT) | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; if (cpu_arch <= CPU_ARCH_ARMv5) pmdval |= PMD_BIT4; pmd = pmd_off(pgd, i << PGDIR_SHIFT); pmd[0] = __pmd(pmdval); pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); flush_pmd_entry(pmd); } } extern void _stext, _etext; /* * Setup initial mappings. We use the page we allocated for zero page to hold * the mappings, which will get overwritten by the vectors in traps_init(). * The mappings must be in virtual address order. */ void __init memtable_init(struct meminfo *mi) { struct map_desc *init_maps, *p, *q; unsigned long address = 0; int i; build_mem_type_table(); init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE); #ifdef CONFIG_XIP_KERNEL p->physical = CONFIG_XIP_PHYS_ADDR & PMD_MASK; p->virtual = (unsigned long)&_stext & PMD_MASK; p->length = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK; p->type = MT_ROM; p ++; #endif for (i = 0; i < mi->nr_banks; i++) { if (mi->bank[i].size == 0) continue; p->physical = mi->bank[i].start; p->virtual = __phys_to_virt(p->physical); p->length = mi->bank[i].size; p->type = MT_MEMORY; p ++; } #ifdef FLUSH_BASE p->physical = FLUSH_BASE_PHYS; p->virtual = FLUSH_BASE; p->length = PGDIR_SIZE; p->type = MT_CACHECLEAN; p ++; #endif #ifdef FLUSH_BASE_MINICACHE p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE; p->virtual = FLUSH_BASE_MINICACHE; p->length = PGDIR_SIZE; p->type = MT_MINICLEAN; p ++; #endif /* * Go through the initial mappings, but clear out any * pgdir entries that are not in the description. */ q = init_maps; do { if (address < q->virtual || q == p) { clear_mapping(address); address += PGDIR_SIZE; } else { create_mapping(q); address = q->virtual + q->length; address = (address + PGDIR_SIZE - 1) & PGDIR_MASK; q ++; } } while (address != 0); /* * Create a mapping for the machine vectors at the high-vectors * location (0xffff0000). If we aren't using high-vectors, also * create a mapping at the low-vectors virtual address. */ init_maps->physical = virt_to_phys(init_maps); init_maps->virtual = 0xffff0000; init_maps->length = PAGE_SIZE; init_maps->type = MT_HIGH_VECTORS; create_mapping(init_maps); if (!vectors_high()) { init_maps->virtual = 0; init_maps->type = MT_LOW_VECTORS; create_mapping(init_maps); } flush_cache_all(); flush_tlb_all(); top_pmd = pmd_off_k(0xffff0000); } /* * Create the architecture specific mappings */ void __init iotable_init(struct map_desc *io_desc, int nr) { int i; for (i = 0; i < nr; i++) create_mapping(io_desc + i); } static inline void free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) { struct page *start_pg, *end_pg; unsigned long pg, pgend; /* * Convert start_pfn/end_pfn to a struct page pointer. */ start_pg = pfn_to_page(start_pfn); end_pg = pfn_to_page(end_pfn); /* * Convert to physical addresses, and * round start upwards and end downwards. */ pg = PAGE_ALIGN(__pa(start_pg)); pgend = __pa(end_pg) & PAGE_MASK; /* * If there are free pages between these, * free the section of the memmap array. */ if (pg < pgend) free_bootmem_node(NODE_DATA(node), pg, pgend - pg); } static inline void free_unused_memmap_node(int node, struct meminfo *mi) { unsigned long bank_start, prev_bank_end = 0; unsigned int i; /* * [FIXME] This relies on each bank being in address order. This * may not be the case, especially if the user has provided the * information on the command line. */ for (i = 0; i < mi->nr_banks; i++) { if (mi->bank[i].size == 0 || mi->bank[i].node != node) continue; bank_start = mi->bank[i].start >> PAGE_SHIFT; if (bank_start < prev_bank_end) { printk(KERN_ERR "MEM: unordered memory banks. " "Not freeing memmap.\n"); break; } /* * If we had a previous bank, and there is a space * between the current bank and the previous, free it. */ if (prev_bank_end && prev_bank_end != bank_start) free_memmap(node, prev_bank_end, bank_start); prev_bank_end = PAGE_ALIGN(mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT; } } /* * The mem_map array can get very big. Free * the unused area of the memory map. */ void __init create_memmap_holes(struct meminfo *mi) { int node; for_each_online_node(node) free_unused_memmap_node(node, mi); }