/* * File: arch/blackfin/kernel/bfin_dma_5xx.c * Based on: * Author: * * Created: * Description: This file contains the simple DMA Implementation for Blackfin * * Modified: * Copyright 2004-2006 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include /* Remove unused code not exported by symbol or internally called */ #define REMOVE_DEAD_CODE /************************************************************************** * Global Variables ***************************************************************************/ static struct dma_channel dma_ch[MAX_BLACKFIN_DMA_CHANNEL]; #if defined (CONFIG_BF561) static struct dma_register *base_addr[MAX_BLACKFIN_DMA_CHANNEL] = { (struct dma_register *) DMA1_0_NEXT_DESC_PTR, (struct dma_register *) DMA1_1_NEXT_DESC_PTR, (struct dma_register *) DMA1_2_NEXT_DESC_PTR, (struct dma_register *) DMA1_3_NEXT_DESC_PTR, (struct dma_register *) DMA1_4_NEXT_DESC_PTR, (struct dma_register *) DMA1_5_NEXT_DESC_PTR, (struct dma_register *) DMA1_6_NEXT_DESC_PTR, (struct dma_register *) DMA1_7_NEXT_DESC_PTR, (struct dma_register *) DMA1_8_NEXT_DESC_PTR, (struct dma_register *) DMA1_9_NEXT_DESC_PTR, (struct dma_register *) DMA1_10_NEXT_DESC_PTR, (struct dma_register *) DMA1_11_NEXT_DESC_PTR, (struct dma_register *) DMA2_0_NEXT_DESC_PTR, (struct dma_register *) DMA2_1_NEXT_DESC_PTR, (struct dma_register *) DMA2_2_NEXT_DESC_PTR, (struct dma_register *) DMA2_3_NEXT_DESC_PTR, (struct dma_register *) DMA2_4_NEXT_DESC_PTR, (struct dma_register *) DMA2_5_NEXT_DESC_PTR, (struct dma_register *) DMA2_6_NEXT_DESC_PTR, (struct dma_register *) DMA2_7_NEXT_DESC_PTR, (struct dma_register *) DMA2_8_NEXT_DESC_PTR, (struct dma_register *) DMA2_9_NEXT_DESC_PTR, (struct dma_register *) DMA2_10_NEXT_DESC_PTR, (struct dma_register *) DMA2_11_NEXT_DESC_PTR, (struct dma_register *) MDMA1_D0_NEXT_DESC_PTR, (struct dma_register *) MDMA1_S0_NEXT_DESC_PTR, (struct dma_register *) MDMA1_D1_NEXT_DESC_PTR, (struct dma_register *) MDMA1_S1_NEXT_DESC_PTR, (struct dma_register *) MDMA2_D0_NEXT_DESC_PTR, (struct dma_register *) MDMA2_S0_NEXT_DESC_PTR, (struct dma_register *) MDMA2_D1_NEXT_DESC_PTR, (struct dma_register *) MDMA2_S1_NEXT_DESC_PTR, (struct dma_register *) IMDMA_D0_NEXT_DESC_PTR, (struct dma_register *) IMDMA_S0_NEXT_DESC_PTR, (struct dma_register *) IMDMA_D1_NEXT_DESC_PTR, (struct dma_register *) IMDMA_S1_NEXT_DESC_PTR, }; #else static struct dma_register *base_addr[MAX_BLACKFIN_DMA_CHANNEL] = { (struct dma_register *) DMA0_NEXT_DESC_PTR, (struct dma_register *) DMA1_NEXT_DESC_PTR, (struct dma_register *) DMA2_NEXT_DESC_PTR, (struct dma_register *) DMA3_NEXT_DESC_PTR, (struct dma_register *) DMA4_NEXT_DESC_PTR, (struct dma_register *) DMA5_NEXT_DESC_PTR, (struct dma_register *) DMA6_NEXT_DESC_PTR, (struct dma_register *) DMA7_NEXT_DESC_PTR, #if (defined(CONFIG_BF537) || defined(CONFIG_BF534) || defined(CONFIG_BF536)) (struct dma_register *) DMA8_NEXT_DESC_PTR, (struct dma_register *) DMA9_NEXT_DESC_PTR, (struct dma_register *) DMA10_NEXT_DESC_PTR, (struct dma_register *) DMA11_NEXT_DESC_PTR, #endif (struct dma_register *) MDMA_D0_NEXT_DESC_PTR, (struct dma_register *) MDMA_S0_NEXT_DESC_PTR, (struct dma_register *) MDMA_D1_NEXT_DESC_PTR, (struct dma_register *) MDMA_S1_NEXT_DESC_PTR, }; #endif /*------------------------------------------------------------------------------ * Set the Buffer Clear bit in the Configuration register of specific DMA * channel. This will stop the descriptor based DMA operation. *-----------------------------------------------------------------------------*/ static void clear_dma_buffer(unsigned int channel) { dma_ch[channel].regs->cfg |= RESTART; SSYNC(); dma_ch[channel].regs->cfg &= ~RESTART; SSYNC(); } static int __init blackfin_dma_init(void) { int i; printk(KERN_INFO "Blackfin DMA Controller\n"); for (i = 0; i < MAX_BLACKFIN_DMA_CHANNEL; i++) { dma_ch[i].chan_status = DMA_CHANNEL_FREE; dma_ch[i].regs = base_addr[i]; mutex_init(&(dma_ch[i].dmalock)); } /* Mark MEMDMA Channel 0 as requested since we're using it internally */ dma_ch[CH_MEM_STREAM0_DEST].chan_status = DMA_CHANNEL_REQUESTED; dma_ch[CH_MEM_STREAM0_SRC].chan_status = DMA_CHANNEL_REQUESTED; return 0; } arch_initcall(blackfin_dma_init); /* * Form the channel find the irq number for that channel. */ #if !defined(CONFIG_BF561) static int bf533_channel2irq(unsigned int channel) { int ret_irq = -1; switch (channel) { case CH_PPI: ret_irq = IRQ_PPI; break; #if (defined(CONFIG_BF537) || defined(CONFIG_BF534) || defined(CONFIG_BF536)) case CH_EMAC_RX: ret_irq = IRQ_MAC_RX; break; case CH_EMAC_TX: ret_irq = IRQ_MAC_TX; break; case CH_UART1_RX: ret_irq = IRQ_UART1_RX; break; case CH_UART1_TX: ret_irq = IRQ_UART1_TX; break; #endif case CH_SPORT0_RX: ret_irq = IRQ_SPORT0_RX; break; case CH_SPORT0_TX: ret_irq = IRQ_SPORT0_TX; break; case CH_SPORT1_RX: ret_irq = IRQ_SPORT1_RX; break; case CH_SPORT1_TX: ret_irq = IRQ_SPORT1_TX; break; case CH_SPI: ret_irq = IRQ_SPI; break; case CH_UART_RX: ret_irq = IRQ_UART_RX; break; case CH_UART_TX: ret_irq = IRQ_UART_TX; break; case CH_MEM_STREAM0_SRC: case CH_MEM_STREAM0_DEST: ret_irq = IRQ_MEM_DMA0; break; case CH_MEM_STREAM1_SRC: case CH_MEM_STREAM1_DEST: ret_irq = IRQ_MEM_DMA1; break; } return ret_irq; } # define channel2irq(channel) bf533_channel2irq(channel) #else static int bf561_channel2irq(unsigned int channel) { int ret_irq = -1; switch (channel) { case CH_PPI0: ret_irq = IRQ_PPI0; break; case CH_PPI1: ret_irq = IRQ_PPI1; break; case CH_SPORT0_RX: ret_irq = IRQ_SPORT0_RX; break; case CH_SPORT0_TX: ret_irq = IRQ_SPORT0_TX; break; case CH_SPORT1_RX: ret_irq = IRQ_SPORT1_RX; break; case CH_SPORT1_TX: ret_irq = IRQ_SPORT1_TX; break; case CH_SPI: ret_irq = IRQ_SPI; break; case CH_UART_RX: ret_irq = IRQ_UART_RX; break; case CH_UART_TX: ret_irq = IRQ_UART_TX; break; case CH_MEM_STREAM0_SRC: case CH_MEM_STREAM0_DEST: ret_irq = IRQ_MEM_DMA0; break; case CH_MEM_STREAM1_SRC: case CH_MEM_STREAM1_DEST: ret_irq = IRQ_MEM_DMA1; break; case CH_MEM_STREAM2_SRC: case CH_MEM_STREAM2_DEST: ret_irq = IRQ_MEM_DMA2; break; case CH_MEM_STREAM3_SRC: case CH_MEM_STREAM3_DEST: ret_irq = IRQ_MEM_DMA3; break; case CH_IMEM_STREAM0_SRC: case CH_IMEM_STREAM0_DEST: ret_irq = IRQ_IMEM_DMA0; break; case CH_IMEM_STREAM1_SRC: case CH_IMEM_STREAM1_DEST: ret_irq = IRQ_IMEM_DMA1; break; } return ret_irq; } # define channel2irq(channel) bf561_channel2irq(channel) #endif /*------------------------------------------------------------------------------ * Request the specific DMA channel from the system. *-----------------------------------------------------------------------------*/ int request_dma(unsigned int channel, char *device_id) { pr_debug("request_dma() : BEGIN \n"); mutex_lock(&(dma_ch[channel].dmalock)); if ((dma_ch[channel].chan_status == DMA_CHANNEL_REQUESTED) || (dma_ch[channel].chan_status == DMA_CHANNEL_ENABLED)) { mutex_unlock(&(dma_ch[channel].dmalock)); pr_debug("DMA CHANNEL IN USE \n"); return -EBUSY; } else { dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED; pr_debug("DMA CHANNEL IS ALLOCATED \n"); } mutex_unlock(&(dma_ch[channel].dmalock)); dma_ch[channel].device_id = device_id; dma_ch[channel].irq_callback = NULL; /* This is to be enabled by putting a restriction - * you have to request DMA, before doing any operations on * descriptor/channel */ pr_debug("request_dma() : END \n"); return channel; } EXPORT_SYMBOL(request_dma); int set_dma_callback(unsigned int channel, dma_interrupt_t callback, void *data) { int ret_irq = 0; BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); if (callback != NULL) { int ret_val; ret_irq = channel2irq(channel); dma_ch[channel].data = data; ret_val = request_irq(ret_irq, (void *)callback, IRQF_DISABLED, dma_ch[channel].device_id, data); if (ret_val) { printk(KERN_NOTICE "Request irq in DMA engine failed.\n"); return -EPERM; } dma_ch[channel].irq_callback = callback; } return 0; } EXPORT_SYMBOL(set_dma_callback); void free_dma(unsigned int channel) { int ret_irq; pr_debug("freedma() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); /* Halt the DMA */ disable_dma(channel); clear_dma_buffer(channel); if (dma_ch[channel].irq_callback != NULL) { ret_irq = channel2irq(channel); free_irq(ret_irq, dma_ch[channel].data); } /* Clear the DMA Variable in the Channel */ mutex_lock(&(dma_ch[channel].dmalock)); dma_ch[channel].chan_status = DMA_CHANNEL_FREE; mutex_unlock(&(dma_ch[channel].dmalock)); pr_debug("freedma() : END \n"); } EXPORT_SYMBOL(free_dma); void dma_enable_irq(unsigned int channel) { int ret_irq; pr_debug("dma_enable_irq() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); ret_irq = channel2irq(channel); enable_irq(ret_irq); } EXPORT_SYMBOL(dma_enable_irq); void dma_disable_irq(unsigned int channel) { int ret_irq; pr_debug("dma_disable_irq() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); ret_irq = channel2irq(channel); disable_irq(ret_irq); } EXPORT_SYMBOL(dma_disable_irq); int dma_channel_active(unsigned int channel) { if (dma_ch[channel].chan_status == DMA_CHANNEL_FREE) { return 0; } else { return 1; } } EXPORT_SYMBOL(dma_channel_active); /*------------------------------------------------------------------------------ * stop the specific DMA channel. *-----------------------------------------------------------------------------*/ void disable_dma(unsigned int channel) { pr_debug("stop_dma() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->cfg &= ~DMAEN; /* Clean the enable bit */ SSYNC(); dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED; /* Needs to be enabled Later */ pr_debug("stop_dma() : END \n"); return; } EXPORT_SYMBOL(disable_dma); void enable_dma(unsigned int channel) { pr_debug("enable_dma() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].chan_status = DMA_CHANNEL_ENABLED; dma_ch[channel].regs->curr_x_count = 0; dma_ch[channel].regs->curr_y_count = 0; dma_ch[channel].regs->cfg |= DMAEN; /* Set the enable bit */ SSYNC(); pr_debug("enable_dma() : END \n"); return; } EXPORT_SYMBOL(enable_dma); /*------------------------------------------------------------------------------ * Set the Start Address register for the specific DMA channel * This function can be used for register based DMA, * to setup the start address * addr: Starting address of the DMA Data to be transferred. *-----------------------------------------------------------------------------*/ void set_dma_start_addr(unsigned int channel, unsigned long addr) { pr_debug("set_dma_start_addr() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->start_addr = addr; SSYNC(); pr_debug("set_dma_start_addr() : END\n"); } EXPORT_SYMBOL(set_dma_start_addr); void set_dma_next_desc_addr(unsigned int channel, unsigned long addr) { pr_debug("set_dma_next_desc_addr() : BEGIN \n"); BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->next_desc_ptr = addr; SSYNC(); pr_debug("set_dma_start_addr() : END\n"); } EXPORT_SYMBOL(set_dma_next_desc_addr); void set_dma_x_count(unsigned int channel, unsigned short x_count) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->x_count = x_count; SSYNC(); } EXPORT_SYMBOL(set_dma_x_count); void set_dma_y_count(unsigned int channel, unsigned short y_count) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->y_count = y_count; SSYNC(); } EXPORT_SYMBOL(set_dma_y_count); void set_dma_x_modify(unsigned int channel, short x_modify) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->x_modify = x_modify; SSYNC(); } EXPORT_SYMBOL(set_dma_x_modify); void set_dma_y_modify(unsigned int channel, short y_modify) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->y_modify = y_modify; SSYNC(); } EXPORT_SYMBOL(set_dma_y_modify); void set_dma_config(unsigned int channel, unsigned short config) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->cfg = config; SSYNC(); } EXPORT_SYMBOL(set_dma_config); unsigned short set_bfin_dma_config(char direction, char flow_mode, char intr_mode, char dma_mode, char width) { unsigned short config; config = ((direction << 1) | (width << 2) | (dma_mode << 4) | (intr_mode << 6) | (flow_mode << 12) | RESTART); return config; } EXPORT_SYMBOL(set_bfin_dma_config); void set_dma_sg(unsigned int channel, struct dmasg * sg, int nr_sg) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->cfg |= ((nr_sg & 0x0F) << 8); dma_ch[channel].regs->next_desc_ptr = (unsigned int)sg; SSYNC(); } EXPORT_SYMBOL(set_dma_sg); /*------------------------------------------------------------------------------ * Get the DMA status of a specific DMA channel from the system. *-----------------------------------------------------------------------------*/ unsigned short get_dma_curr_irqstat(unsigned int channel) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); return dma_ch[channel].regs->irq_status; } EXPORT_SYMBOL(get_dma_curr_irqstat); /*------------------------------------------------------------------------------ * Clear the DMA_DONE bit in DMA status. Stop the DMA completion interrupt. *-----------------------------------------------------------------------------*/ void clear_dma_irqstat(unsigned int channel) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); dma_ch[channel].regs->irq_status |= 3; } EXPORT_SYMBOL(clear_dma_irqstat); /*------------------------------------------------------------------------------ * Get current DMA xcount of a specific DMA channel from the system. *-----------------------------------------------------------------------------*/ unsigned short get_dma_curr_xcount(unsigned int channel) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); return dma_ch[channel].regs->curr_x_count; } EXPORT_SYMBOL(get_dma_curr_xcount); /*------------------------------------------------------------------------------ * Get current DMA ycount of a specific DMA channel from the system. *-----------------------------------------------------------------------------*/ unsigned short get_dma_curr_ycount(unsigned int channel) { BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE && channel < MAX_BLACKFIN_DMA_CHANNEL)); return dma_ch[channel].regs->curr_y_count; } EXPORT_SYMBOL(get_dma_curr_ycount); void *dma_memcpy(void *dest, const void *src, size_t size) { int direction; /* 1 - address decrease, 0 - address increase */ int flag_align; /* 1 - address aligned, 0 - address unaligned */ int flag_2D; /* 1 - 2D DMA needed, 0 - 1D DMA needed */ unsigned long flags; if (size <= 0) return NULL; local_irq_save(flags); if ((unsigned long)src < memory_end) blackfin_dcache_flush_range((unsigned int)src, (unsigned int)(src + size)); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); if ((unsigned long)src < (unsigned long)dest) direction = 1; else direction = 0; if ((((unsigned long)dest % 2) == 0) && (((unsigned long)src % 2) == 0) && ((size % 2) == 0)) flag_align = 1; else flag_align = 0; if (size > 0x10000) /* size > 64K */ flag_2D = 1; else flag_2D = 0; /* Setup destination and source start address */ if (direction) { if (flag_align) { bfin_write_MDMA_D0_START_ADDR(dest + size - 2); bfin_write_MDMA_S0_START_ADDR(src + size - 2); } else { bfin_write_MDMA_D0_START_ADDR(dest + size - 1); bfin_write_MDMA_S0_START_ADDR(src + size - 1); } } else { bfin_write_MDMA_D0_START_ADDR(dest); bfin_write_MDMA_S0_START_ADDR(src); } /* Setup destination and source xcount */ if (flag_2D) { if (flag_align) { bfin_write_MDMA_D0_X_COUNT(1024 / 2); bfin_write_MDMA_S0_X_COUNT(1024 / 2); } else { bfin_write_MDMA_D0_X_COUNT(1024); bfin_write_MDMA_S0_X_COUNT(1024); } bfin_write_MDMA_D0_Y_COUNT(size >> 10); bfin_write_MDMA_S0_Y_COUNT(size >> 10); } else { if (flag_align) { bfin_write_MDMA_D0_X_COUNT(size / 2); bfin_write_MDMA_S0_X_COUNT(size / 2); } else { bfin_write_MDMA_D0_X_COUNT(size); bfin_write_MDMA_S0_X_COUNT(size); } } /* Setup destination and source xmodify and ymodify */ if (direction) { if (flag_align) { bfin_write_MDMA_D0_X_MODIFY(-2); bfin_write_MDMA_S0_X_MODIFY(-2); if (flag_2D) { bfin_write_MDMA_D0_Y_MODIFY(-2); bfin_write_MDMA_S0_Y_MODIFY(-2); } } else { bfin_write_MDMA_D0_X_MODIFY(-1); bfin_write_MDMA_S0_X_MODIFY(-1); if (flag_2D) { bfin_write_MDMA_D0_Y_MODIFY(-1); bfin_write_MDMA_S0_Y_MODIFY(-1); } } } else { if (flag_align) { bfin_write_MDMA_D0_X_MODIFY(2); bfin_write_MDMA_S0_X_MODIFY(2); if (flag_2D) { bfin_write_MDMA_D0_Y_MODIFY(2); bfin_write_MDMA_S0_Y_MODIFY(2); } } else { bfin_write_MDMA_D0_X_MODIFY(1); bfin_write_MDMA_S0_X_MODIFY(1); if (flag_2D) { bfin_write_MDMA_D0_Y_MODIFY(1); bfin_write_MDMA_S0_Y_MODIFY(1); } } } /* Enable source DMA */ if (flag_2D) { if (flag_align) { bfin_write_MDMA_S0_CONFIG(DMAEN | DMA2D | WDSIZE_16); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | DMA2D | WDSIZE_16); } else { bfin_write_MDMA_S0_CONFIG(DMAEN | DMA2D); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | DMA2D); } } else { if (flag_align) { bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16); } else { bfin_write_MDMA_S0_CONFIG(DMAEN); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN); } } while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ; bfin_write_MDMA_D0_IRQ_STATUS(bfin_read_MDMA_D0_IRQ_STATUS() | (DMA_DONE | DMA_ERR)); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); if ((unsigned long)dest < memory_end) blackfin_dcache_invalidate_range((unsigned int)dest, (unsigned int)(dest + size)); local_irq_restore(flags); return dest; } EXPORT_SYMBOL(dma_memcpy); void *safe_dma_memcpy(void *dest, const void *src, size_t size) { void *addr; addr = dma_memcpy(dest, src, size); return addr; } EXPORT_SYMBOL(safe_dma_memcpy); void dma_outsb(void __iomem *addr, const void *buf, unsigned short len) { unsigned long flags; local_irq_save(flags); blackfin_dcache_flush_range((unsigned int)buf,(unsigned int)(buf) + len); bfin_write_MDMA_D0_START_ADDR(addr); bfin_write_MDMA_D0_X_COUNT(len); bfin_write_MDMA_D0_X_MODIFY(0); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_START_ADDR(buf); bfin_write_MDMA_S0_X_COUNT(len); bfin_write_MDMA_S0_X_MODIFY(1); bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_8); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_8); while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); local_irq_restore(flags); } EXPORT_SYMBOL(dma_outsb); void dma_insb(const void __iomem *addr, void *buf, unsigned short len) { unsigned long flags; local_irq_save(flags); bfin_write_MDMA_D0_START_ADDR(buf); bfin_write_MDMA_D0_X_COUNT(len); bfin_write_MDMA_D0_X_MODIFY(1); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_START_ADDR(addr); bfin_write_MDMA_S0_X_COUNT(len); bfin_write_MDMA_S0_X_MODIFY(0); bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_8); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_8); blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len); while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); local_irq_restore(flags); } EXPORT_SYMBOL(dma_insb); void dma_outsw(void __iomem *addr, const void *buf, unsigned short len) { unsigned long flags; local_irq_save(flags); blackfin_dcache_flush_range((unsigned int)buf,(unsigned int)(buf) + len); bfin_write_MDMA_D0_START_ADDR(addr); bfin_write_MDMA_D0_X_COUNT(len); bfin_write_MDMA_D0_X_MODIFY(0); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_START_ADDR(buf); bfin_write_MDMA_S0_X_COUNT(len); bfin_write_MDMA_S0_X_MODIFY(2); bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16); while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); local_irq_restore(flags); } EXPORT_SYMBOL(dma_outsw); void dma_insw(const void __iomem *addr, void *buf, unsigned short len) { unsigned long flags; local_irq_save(flags); bfin_write_MDMA_D0_START_ADDR(buf); bfin_write_MDMA_D0_X_COUNT(len); bfin_write_MDMA_D0_X_MODIFY(2); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_START_ADDR(addr); bfin_write_MDMA_S0_X_COUNT(len); bfin_write_MDMA_S0_X_MODIFY(0); bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16); blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len); while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); local_irq_restore(flags); } EXPORT_SYMBOL(dma_insw); void dma_outsl(void __iomem *addr, const void *buf, unsigned short len) { unsigned long flags; local_irq_save(flags); blackfin_dcache_flush_range((unsigned int)buf,(unsigned int)(buf) + len); bfin_write_MDMA_D0_START_ADDR(addr); bfin_write_MDMA_D0_X_COUNT(len); bfin_write_MDMA_D0_X_MODIFY(0); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_START_ADDR(buf); bfin_write_MDMA_S0_X_COUNT(len); bfin_write_MDMA_S0_X_MODIFY(4); bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_32); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_32); while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); local_irq_restore(flags); } EXPORT_SYMBOL(dma_outsl); void dma_insl(const void __iomem *addr, void *buf, unsigned short len) { unsigned long flags; local_irq_save(flags); bfin_write_MDMA_D0_START_ADDR(buf); bfin_write_MDMA_D0_X_COUNT(len); bfin_write_MDMA_D0_X_MODIFY(4); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_START_ADDR(addr); bfin_write_MDMA_S0_X_COUNT(len); bfin_write_MDMA_S0_X_MODIFY(0); bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_32); bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_32); blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len); while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)); bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR); bfin_write_MDMA_S0_CONFIG(0); bfin_write_MDMA_D0_CONFIG(0); local_irq_restore(flags); } EXPORT_SYMBOL(dma_insl);