/* * File: arch/blackfin/kernel/module.c * Based on: * Author: * * Created: * Description: * * Modified: * Copyright 2004-2006 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include void *module_alloc(unsigned long size) { if (size == 0) return NULL; return vmalloc(size); } /* Free memory returned from module_alloc */ void module_free(struct module *mod, void *module_region) { vfree(module_region); } /* Transfer the section to the L1 memory */ int module_frob_arch_sections(Elf_Ehdr * hdr, Elf_Shdr * sechdrs, char *secstrings, struct module *mod) { /* * XXX: sechdrs are vmalloced in kernel/module.c * and would be vfreed just after module is loaded, * so we hack to keep the only information we needed * in mod->arch to correctly free L1 I/D sram later. * NOTE: this breaks the semantic of mod->arch structure. */ Elf_Shdr *s, *sechdrs_end = sechdrs + hdr->e_shnum; void *dest = NULL; for (s = sechdrs; s < sechdrs_end; ++s) { if ((strcmp(".l1.text", secstrings + s->sh_name) == 0) || ((strcmp(".text", secstrings + s->sh_name) == 0) && (hdr->e_flags & EF_BFIN_CODE_IN_L1) && (s->sh_size > 0))) { dest = l1_inst_sram_alloc(s->sh_size); mod->arch.text_l1 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L1 instruction memory allocation failed\n", mod->name); return -1; } dma_memcpy(dest, (void *)s->sh_addr, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } if ((strcmp(".l1.data", secstrings + s->sh_name) == 0) || ((strcmp(".data", secstrings + s->sh_name) == 0) && (hdr->e_flags & EF_BFIN_DATA_IN_L1) && (s->sh_size > 0))) { dest = l1_data_sram_alloc(s->sh_size); mod->arch.data_a_l1 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L1 data memory allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } if (strcmp(".l1.bss", secstrings + s->sh_name) == 0 || ((strcmp(".bss", secstrings + s->sh_name) == 0) && (hdr->e_flags & EF_BFIN_DATA_IN_L1) && (s->sh_size > 0))) { dest = l1_data_sram_alloc(s->sh_size); mod->arch.bss_a_l1 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L1 data memory allocation failed\n", mod->name); return -1; } memset(dest, 0, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } if (strcmp(".l1.data.B", secstrings + s->sh_name) == 0) { dest = l1_data_B_sram_alloc(s->sh_size); mod->arch.data_b_l1 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L1 data memory allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } if (strcmp(".l1.bss.B", secstrings + s->sh_name) == 0) { dest = l1_data_B_sram_alloc(s->sh_size); mod->arch.bss_b_l1 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L1 data memory allocation failed\n", mod->name); return -1; } memset(dest, 0, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } if ((strcmp(".l2.text", secstrings + s->sh_name) == 0) || ((strcmp(".text", secstrings + s->sh_name) == 0) && (hdr->e_flags & EF_BFIN_CODE_IN_L2) && (s->sh_size > 0))) { dest = l2_sram_alloc(s->sh_size); mod->arch.text_l2 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L2 SRAM allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } if ((strcmp(".l2.data", secstrings + s->sh_name) == 0) || ((strcmp(".data", secstrings + s->sh_name) == 0) && (hdr->e_flags & EF_BFIN_DATA_IN_L2) && (s->sh_size > 0))) { dest = l2_sram_alloc(s->sh_size); mod->arch.data_l2 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L2 SRAM allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } if (strcmp(".l2.bss", secstrings + s->sh_name) == 0 || ((strcmp(".bss", secstrings + s->sh_name) == 0) && (hdr->e_flags & EF_BFIN_DATA_IN_L2) && (s->sh_size > 0))) { dest = l2_sram_alloc(s->sh_size); mod->arch.bss_l2 = dest; if (dest == NULL) { printk(KERN_ERR "module %s: L2 SRAM allocation failed\n", mod->name); return -1; } memset(dest, 0, s->sh_size); s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } } return 0; } int apply_relocate(Elf_Shdr * sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { printk(KERN_ERR "module %s: .rel unsupported\n", me->name); return -ENOEXEC; } /*************************************************************************/ /* FUNCTION : apply_relocate_add */ /* ABSTRACT : Blackfin specific relocation handling for the loadable */ /* modules. Modules are expected to be .o files. */ /* Arithmetic relocations are handled. */ /* We do not expect LSETUP to be split and hence is not */ /* handled. */ /* R_byte and R_byte2 are also not handled as the gas */ /* does not generate it. */ /*************************************************************************/ int apply_relocate_add(Elf_Shdr * sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *mod) { unsigned int i; unsigned short tmp; Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; Elf32_Sym *sym; uint32_t *location32; uint16_t *location16; uint32_t value; pr_debug("Applying relocate section %u to %u\n", relsec, sechdrs[relsec].sh_info); for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { /* This is where to make the change */ location16 = (uint16_t *) (sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset); location32 = (uint32_t *) location16; /* This is the symbol it is referring to. Note that all undefined symbols have been resolved. */ sym = (Elf32_Sym *) sechdrs[symindex].sh_addr + ELF32_R_SYM(rel[i].r_info); value = sym->st_value; value += rel[i].r_addend; pr_debug("location is %x, value is %x type is %d \n", (unsigned int) location32, value, ELF32_R_TYPE(rel[i].r_info)); #ifdef CONFIG_SMP if ((unsigned long)location16 >= COREB_L1_DATA_A_START) { printk(KERN_ERR "module %s: cannot relocate in L1: %u (SMP kernel)", mod->name, ELF32_R_TYPE(rel[i].r_info)); return -ENOEXEC; } #endif switch (ELF32_R_TYPE(rel[i].r_info)) { case R_pcrel24: case R_pcrel24_jump_l: /* Add the value, subtract its postition */ location16 = (uint16_t *) (sechdrs[sechdrs[relsec].sh_info]. sh_addr + rel[i].r_offset - 2); location32 = (uint32_t *) location16; value -= (uint32_t) location32; value >>= 1; if ((value & 0xFF000000) != 0 && (value & 0xFF000000) != 0xFF000000) { printk(KERN_ERR "module %s: relocation overflow\n", mod->name); return -ENOEXEC; } pr_debug("value is %x, before %x-%x after %x-%x\n", value, *location16, *(location16 + 1), (*location16 & 0xff00) | (value >> 16 & 0x00ff), value & 0xffff); *location16 = (*location16 & 0xff00) | (value >> 16 & 0x00ff); *(location16 + 1) = value & 0xffff; break; case R_pcrel12_jump: case R_pcrel12_jump_s: value -= (uint32_t) location32; value >>= 1; *location16 = (value & 0xfff); break; case R_pcrel10: value -= (uint32_t) location32; value >>= 1; *location16 = (value & 0x3ff); break; case R_luimm16: pr_debug("before %x after %x\n", *location16, (value & 0xffff)); tmp = (value & 0xffff); if ((unsigned long)location16 >= L1_CODE_START) { dma_memcpy(location16, &tmp, 2); } else *location16 = tmp; break; case R_huimm16: pr_debug("before %x after %x\n", *location16, ((value >> 16) & 0xffff)); tmp = ((value >> 16) & 0xffff); if ((unsigned long)location16 >= L1_CODE_START) { dma_memcpy(location16, &tmp, 2); } else *location16 = tmp; break; case R_rimm16: *location16 = (value & 0xffff); break; case R_byte4_data: pr_debug("before %x after %x\n", *location32, value); *location32 = value; break; default: printk(KERN_ERR "module %s: Unknown relocation: %u\n", mod->name, ELF32_R_TYPE(rel[i].r_info)); return -ENOEXEC; } } return 0; } int module_finalize(const Elf_Ehdr * hdr, const Elf_Shdr * sechdrs, struct module *mod) { unsigned int i, strindex = 0, symindex = 0; char *secstrings; long err = 0; secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; for (i = 1; i < hdr->e_shnum; i++) { /* Internal symbols and strings. */ if (sechdrs[i].sh_type == SHT_SYMTAB) { symindex = i; strindex = sechdrs[i].sh_link; } } for (i = 1; i < hdr->e_shnum; i++) { const char *strtab = (char *)sechdrs[strindex].sh_addr; unsigned int info = sechdrs[i].sh_info; /* Not a valid relocation section? */ if (info >= hdr->e_shnum) continue; if ((sechdrs[i].sh_type == SHT_RELA) && ((strcmp(".rela.l2.text", secstrings + sechdrs[i].sh_name) == 0) || (strcmp(".rela.l1.text", secstrings + sechdrs[i].sh_name) == 0) || ((strcmp(".rela.text", secstrings + sechdrs[i].sh_name) == 0) && (hdr->e_flags & (EF_BFIN_CODE_IN_L1|EF_BFIN_CODE_IN_L2))))) { err = apply_relocate_add((Elf_Shdr *) sechdrs, strtab, symindex, i, mod); if (err < 0) return -ENOEXEC; } } return 0; } void module_arch_cleanup(struct module *mod) { l1_inst_sram_free(mod->arch.text_l1); l1_data_A_sram_free(mod->arch.data_a_l1); l1_data_A_sram_free(mod->arch.bss_a_l1); l1_data_B_sram_free(mod->arch.data_b_l1); l1_data_B_sram_free(mod->arch.bss_b_l1); l2_sram_free(mod->arch.text_l2); l2_sram_free(mod->arch.data_l2); l2_sram_free(mod->arch.bss_l2); }