/* * File: arch/blackfin/mm/blackfin_sram.c * Based on: * Author: * * Created: * Description: SRAM driver for Blackfin ADSP-BF5xx * * Modified: * Copyright 2004-2007 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/miscdevice.h> #include <linux/ioport.h> #include <linux/fcntl.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/proc_fs.h> #include <linux/spinlock.h> #include <linux/rtc.h> #include <asm/blackfin.h> #include "blackfin_sram.h" spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock; #if CONFIG_L1_MAX_PIECE < 16 #undef CONFIG_L1_MAX_PIECE #define CONFIG_L1_MAX_PIECE 16 #endif #if CONFIG_L1_MAX_PIECE > 1024 #undef CONFIG_L1_MAX_PIECE #define CONFIG_L1_MAX_PIECE 1024 #endif #define SRAM_SLT_NULL 0 #define SRAM_SLT_FREE 1 #define SRAM_SLT_ALLOCATED 2 /* the data structure for L1 scratchpad and DATA SRAM */ struct l1_sram_piece { void *paddr; int size; int flag; pid_t pid; }; static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE]; #if L1_DATA_A_LENGTH != 0 static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE]; #endif #if L1_DATA_B_LENGTH != 0 static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE]; #endif #if L1_CODE_LENGTH != 0 static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE]; #endif /* L1 Scratchpad SRAM initialization function */ void __init l1sram_init(void) { printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n", L1_SCRATCH_LENGTH >> 10); memset(&l1_ssram, 0x00, sizeof(l1_ssram)); l1_ssram[0].paddr = (void *)L1_SCRATCH_START; l1_ssram[0].size = L1_SCRATCH_LENGTH; l1_ssram[0].flag = SRAM_SLT_FREE; /* mutex initialize */ spin_lock_init(&l1sram_lock); } void __init l1_data_sram_init(void) { #if L1_DATA_A_LENGTH != 0 memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram)); l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START + (_ebss_l1 - _sdata_l1); l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1); l1_data_A_sram[0].flag = SRAM_SLT_FREE; printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n", L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10); #endif #if L1_DATA_B_LENGTH != 0 memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram)); l1_data_B_sram[0].paddr = (void *)L1_DATA_B_START + (_ebss_b_l1 - _sdata_b_l1); l1_data_B_sram[0].size = L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1); l1_data_B_sram[0].flag = SRAM_SLT_FREE; printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n", L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10); #endif /* mutex initialize */ spin_lock_init(&l1_data_sram_lock); } void __init l1_inst_sram_init(void) { #if L1_CODE_LENGTH != 0 memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram)); l1_inst_sram[0].paddr = (void *)L1_CODE_START + (_etext_l1 - _stext_l1); l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1); l1_inst_sram[0].flag = SRAM_SLT_FREE; printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n", L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10); #endif /* mutex initialize */ spin_lock_init(&l1_inst_sram_lock); } /* L1 memory allocate function */ static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count) { int i, index = 0; void *addr = NULL; if (size <= 0) return NULL; /* Align the size */ size = (size + 3) & ~3; /* not use the good method to match the best slot !!! */ /* search an available memory slot */ for (i = 0; i < count; i++) { if ((pfree[i].flag == SRAM_SLT_FREE) && (pfree[i].size >= size)) { addr = pfree[i].paddr; pfree[i].flag = SRAM_SLT_ALLOCATED; pfree[i].pid = current->pid; index = i; break; } } if (i >= count) return NULL; /* updated the NULL memory slot !!! */ if (pfree[i].size > size) { for (i = 0; i < count; i++) { if (pfree[i].flag == SRAM_SLT_NULL) { pfree[i].pid = 0; pfree[i].flag = SRAM_SLT_FREE; pfree[i].paddr = addr + size; pfree[i].size = pfree[index].size - size; pfree[index].size = size; break; } } } return addr; } /* Allocate the largest available block. */ static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count, unsigned long *psize) { unsigned long best = 0; int i, index = -1; void *addr = NULL; /* search an available memory slot */ for (i = 0; i < count; i++) { if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) { addr = pfree[i].paddr; index = i; best = pfree[i].size; } } if (index < 0) return NULL; *psize = best; pfree[index].pid = current->pid; pfree[index].flag = SRAM_SLT_ALLOCATED; return addr; } /* L1 memory free function */ static int _l1_sram_free(const void *addr, struct l1_sram_piece *pfree, int count) { int i, index = 0; /* search the relevant memory slot */ for (i = 0; i < count; i++) { if (pfree[i].paddr == addr) { if (pfree[i].flag != SRAM_SLT_ALLOCATED) { /* error log */ return -1; } index = i; break; } } if (i >= count) return -1; pfree[index].pid = 0; pfree[index].flag = SRAM_SLT_FREE; /* link the next address slot */ for (i = 0; i < count; i++) { if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr) && (pfree[i].flag == SRAM_SLT_FREE)) { pfree[i].pid = 0; pfree[i].flag = SRAM_SLT_NULL; pfree[index].size += pfree[i].size; pfree[index].flag = SRAM_SLT_FREE; break; } } /* link the last address slot */ for (i = 0; i < count; i++) { if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) && (pfree[i].flag == SRAM_SLT_FREE)) { pfree[index].flag = SRAM_SLT_NULL; pfree[i].size += pfree[index].size; break; } } return 0; } int sram_free(const void *addr) { if (0) {} #if L1_CODE_LENGTH != 0 else if (addr >= (void *)L1_CODE_START && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH)) return l1_inst_sram_free(addr); #endif #if L1_DATA_A_LENGTH != 0 else if (addr >= (void *)L1_DATA_A_START && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH)) return l1_data_A_sram_free(addr); #endif #if L1_DATA_B_LENGTH != 0 else if (addr >= (void *)L1_DATA_B_START && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH)) return l1_data_B_sram_free(addr); #endif else return -1; } EXPORT_SYMBOL(sram_free); void *l1_data_A_sram_alloc(size_t size) { unsigned flags; void *addr = NULL; /* add mutex operation */ spin_lock_irqsave(&l1_data_sram_lock, flags); #if L1_DATA_A_LENGTH != 0 addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram)); #endif /* add mutex operation */ spin_unlock_irqrestore(&l1_data_sram_lock, flags); pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n", (long unsigned int)addr, size); return addr; } EXPORT_SYMBOL(l1_data_A_sram_alloc); int l1_data_A_sram_free(const void *addr) { unsigned flags; int ret; /* add mutex operation */ spin_lock_irqsave(&l1_data_sram_lock, flags); #if L1_DATA_A_LENGTH != 0 ret = _l1_sram_free(addr, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram)); #else ret = -1; #endif /* add mutex operation */ spin_unlock_irqrestore(&l1_data_sram_lock, flags); return ret; } EXPORT_SYMBOL(l1_data_A_sram_free); void *l1_data_B_sram_alloc(size_t size) { #if L1_DATA_B_LENGTH != 0 unsigned flags; void *addr; /* add mutex operation */ spin_lock_irqsave(&l1_data_sram_lock, flags); addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram)); /* add mutex operation */ spin_unlock_irqrestore(&l1_data_sram_lock, flags); pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n", (long unsigned int)addr, size); return addr; #else return NULL; #endif } EXPORT_SYMBOL(l1_data_B_sram_alloc); int l1_data_B_sram_free(const void *addr) { #if L1_DATA_B_LENGTH != 0 unsigned flags; int ret; /* add mutex operation */ spin_lock_irqsave(&l1_data_sram_lock, flags); ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram)); /* add mutex operation */ spin_unlock_irqrestore(&l1_data_sram_lock, flags); return ret; #else return -1; #endif } EXPORT_SYMBOL(l1_data_B_sram_free); void *l1_data_sram_alloc(size_t size) { void *addr = l1_data_A_sram_alloc(size); if (!addr) addr = l1_data_B_sram_alloc(size); return addr; } EXPORT_SYMBOL(l1_data_sram_alloc); void *l1_data_sram_zalloc(size_t size) { void *addr = l1_data_sram_alloc(size); if (addr) memset(addr, 0x00, size); return addr; } EXPORT_SYMBOL(l1_data_sram_zalloc); int l1_data_sram_free(const void *addr) { int ret; ret = l1_data_A_sram_free(addr); if (ret == -1) ret = l1_data_B_sram_free(addr); return ret; } EXPORT_SYMBOL(l1_data_sram_free); void *l1_inst_sram_alloc(size_t size) { #if L1_CODE_LENGTH != 0 unsigned flags; void *addr; /* add mutex operation */ spin_lock_irqsave(&l1_inst_sram_lock, flags); addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram)); /* add mutex operation */ spin_unlock_irqrestore(&l1_inst_sram_lock, flags); pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n", (long unsigned int)addr, size); return addr; #else return NULL; #endif } EXPORT_SYMBOL(l1_inst_sram_alloc); int l1_inst_sram_free(const void *addr) { #if L1_CODE_LENGTH != 0 unsigned flags; int ret; /* add mutex operation */ spin_lock_irqsave(&l1_inst_sram_lock, flags); ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram)); /* add mutex operation */ spin_unlock_irqrestore(&l1_inst_sram_lock, flags); return ret; #else return -1; #endif } EXPORT_SYMBOL(l1_inst_sram_free); /* L1 Scratchpad memory allocate function */ void *l1sram_alloc(size_t size) { unsigned flags; void *addr; /* add mutex operation */ spin_lock_irqsave(&l1sram_lock, flags); addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram)); /* add mutex operation */ spin_unlock_irqrestore(&l1sram_lock, flags); return addr; } /* L1 Scratchpad memory allocate function */ void *l1sram_alloc_max(size_t *psize) { unsigned flags; void *addr; /* add mutex operation */ spin_lock_irqsave(&l1sram_lock, flags); addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize); /* add mutex operation */ spin_unlock_irqrestore(&l1sram_lock, flags); return addr; } /* L1 Scratchpad memory free function */ int l1sram_free(const void *addr) { unsigned flags; int ret; /* add mutex operation */ spin_lock_irqsave(&l1sram_lock, flags); ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram)); /* add mutex operation */ spin_unlock_irqrestore(&l1sram_lock, flags); return ret; } int sram_free_with_lsl(const void *addr) { struct sram_list_struct *lsl, **tmp; struct mm_struct *mm = current->mm; for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next) if ((*tmp)->addr == addr) goto found; return -1; found: lsl = *tmp; sram_free(addr); *tmp = lsl->next; kfree(lsl); return 0; } EXPORT_SYMBOL(sram_free_with_lsl); void *sram_alloc_with_lsl(size_t size, unsigned long flags) { void *addr = NULL; struct sram_list_struct *lsl = NULL; struct mm_struct *mm = current->mm; lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL); if (!lsl) return NULL; if (flags & L1_INST_SRAM) addr = l1_inst_sram_alloc(size); if (addr == NULL && (flags & L1_DATA_A_SRAM)) addr = l1_data_A_sram_alloc(size); if (addr == NULL && (flags & L1_DATA_B_SRAM)) addr = l1_data_B_sram_alloc(size); if (addr == NULL) { kfree(lsl); return NULL; } lsl->addr = addr; lsl->length = size; lsl->next = mm->context.sram_list; mm->context.sram_list = lsl; return addr; } EXPORT_SYMBOL(sram_alloc_with_lsl); #ifdef CONFIG_PROC_FS /* Once we get a real allocator, we'll throw all of this away. * Until then, we need some sort of visibility into the L1 alloc. */ static void _l1sram_proc_read(char *buf, int *len, const char *desc, struct l1_sram_piece *pfree, const int array_size) { int i; *len += sprintf(&buf[*len], "--- L1 %-14s Size PID State\n", desc); for (i = 0; i < array_size; ++i) { const char *alloc_type; switch (pfree[i].flag) { case SRAM_SLT_NULL: alloc_type = "NULL"; break; case SRAM_SLT_FREE: alloc_type = "FREE"; break; case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break; default: alloc_type = "????"; break; } *len += sprintf(&buf[*len], "%p-%p %8i %4i %s\n", pfree[i].paddr, pfree[i].paddr + pfree[i].size, pfree[i].size, pfree[i].pid, alloc_type); } } static int l1sram_proc_read(char *buf, char **start, off_t offset, int count, int *eof, void *data) { int len = 0; _l1sram_proc_read(buf, &len, "Scratchpad", l1_ssram, ARRAY_SIZE(l1_ssram)); #if L1_DATA_A_LENGTH != 0 _l1sram_proc_read(buf, &len, "Data A", l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram)); #endif #if L1_DATA_B_LENGTH != 0 _l1sram_proc_read(buf, &len, "Data B", l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram)); #endif #if L1_CODE_LENGTH != 0 _l1sram_proc_read(buf, &len, "Instruction", l1_inst_sram, ARRAY_SIZE(l1_inst_sram)); #endif return len; } static int __init l1sram_proc_init(void) { struct proc_dir_entry *ptr; ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL); if (!ptr) { printk(KERN_WARNING "unable to create /proc/sram\n"); return -1; } ptr->owner = THIS_MODULE; ptr->read_proc = l1sram_proc_read; return 0; } late_initcall(l1sram_proc_init); #endif