/* * File: arch/blackfin/mm/init.c * Based on: * Author: * * Created: * Description: * * Modified: * Copyright 2004-2007 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/swap.h> #include <linux/bootmem.h> #include <linux/uaccess.h> #include <asm/bfin-global.h> #include <asm/l1layout.h> #include "blackfin_sram.h" /* * BAD_PAGE is the page that is used for page faults when linux * is out-of-memory. Older versions of linux just did a * do_exit(), but using this instead means there is less risk * for a process dying in kernel mode, possibly leaving a inode * unused etc.. * * BAD_PAGETABLE is the accompanying page-table: it is initialized * to point to BAD_PAGE entries. * * ZERO_PAGE is a special page that is used for zero-initialized * data and COW. */ static unsigned long empty_bad_page_table; static unsigned long empty_bad_page; unsigned long empty_zero_page; void show_mem(void) { unsigned long i; int free = 0, total = 0, reserved = 0, shared = 0; int cached = 0; printk(KERN_INFO "Mem-info:\n"); show_free_areas(); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map + i)) reserved++; else if (PageSwapCache(mem_map + i)) cached++; else if (!page_count(mem_map + i)) free++; else shared += page_count(mem_map + i) - 1; } printk(KERN_INFO "%d pages of RAM\n", total); printk(KERN_INFO "%d free pages\n", free); printk(KERN_INFO "%d reserved pages\n", reserved); printk(KERN_INFO "%d pages shared\n", shared); printk(KERN_INFO "%d pages swap cached\n", cached); } /* * paging_init() continues the virtual memory environment setup which * was begun by the code in arch/head.S. * The parameters are pointers to where to stick the starting and ending * addresses of available kernel virtual memory. */ void __init paging_init(void) { /* * make sure start_mem is page aligned, otherwise bootmem and * page_alloc get different views og the world */ unsigned long end_mem = memory_end & PAGE_MASK; pr_debug("start_mem is %#lx virtual_end is %#lx\n", PAGE_ALIGN(memory_start), end_mem); /* * initialize the bad page table and bad page to point * to a couple of allocated pages */ empty_bad_page_table = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); empty_bad_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); memset((void *)empty_zero_page, 0, PAGE_SIZE); /* * Set up SFC/DFC registers (user data space) */ set_fs(KERNEL_DS); pr_debug("free_area_init -> start_mem is %#lx virtual_end is %#lx\n", PAGE_ALIGN(memory_start), end_mem); { unsigned long zones_size[MAX_NR_ZONES] = { 0, }; zones_size[ZONE_DMA] = (end_mem - PAGE_OFFSET) >> PAGE_SHIFT; zones_size[ZONE_NORMAL] = 0; #ifdef CONFIG_HIGHMEM zones_size[ZONE_HIGHMEM] = 0; #endif free_area_init(zones_size); } } void __init mem_init(void) { unsigned int codek = 0, datak = 0, initk = 0; unsigned long tmp; unsigned int len = _ramend - _rambase; unsigned long start_mem = memory_start; unsigned long end_mem = memory_end; end_mem &= PAGE_MASK; high_memory = (void *)end_mem; start_mem = PAGE_ALIGN(start_mem); max_mapnr = num_physpages = MAP_NR(high_memory); printk(KERN_INFO "Physical pages: %lx\n", num_physpages); /* This will put all memory onto the freelists. */ totalram_pages = free_all_bootmem(); codek = (_etext - _stext) >> 10; datak = (__bss_stop - __bss_start) >> 10; initk = (__init_end - __init_begin) >> 10; tmp = nr_free_pages() << PAGE_SHIFT; printk(KERN_INFO "Memory available: %luk/%uk RAM, (%uk init code, %uk kernel code, %uk data, %uk dma)\n", tmp >> 10, len >> 10, initk, codek, datak, DMA_UNCACHED_REGION >> 10); /* Initialize the blackfin L1 Memory. */ l1sram_init(); l1_data_sram_init(); l1_inst_sram_init(); /* Allocate this once; never free it. We assume this gives us a pointer to the start of L1 scratchpad memory; panic if it doesn't. */ tmp = (unsigned long)l1sram_alloc(sizeof(struct l1_scratch_task_info)); if (tmp != (unsigned long)L1_SCRATCH_TASK_INFO) { printk(KERN_EMERG "mem_init(): Did not get the right address from l1sram_alloc: %08lx != %08lx\n", tmp, (unsigned long)L1_SCRATCH_TASK_INFO); panic("No L1, time to give up\n"); } } static __init void free_init_pages(const char *what, unsigned long begin, unsigned long end) { unsigned long addr; /* next to check that the page we free is not a partial page */ for (addr = begin; addr + PAGE_SIZE <= end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); free_page(addr); totalram_pages++; } printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { free_init_pages("initrd memory", start, end); } #endif void __init free_initmem(void) { #ifdef CONFIG_RAMKERNEL free_init_pages("unused kernel memory", (unsigned long)(&__init_begin), (unsigned long)(&__init_end)); #endif }