/* * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $) * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (C) 2002 - 2004 Dominik Brodowski * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include /* current */ #include #include #include #include #include #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); MODULE_DESCRIPTION("ACPI Processor P-States Driver"); MODULE_LICENSE("GPL"); struct cpufreq_acpi_io { struct acpi_processor_performance *acpi_data; struct cpufreq_frequency_table *freq_table; unsigned int resume; }; static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; static struct acpi_processor_performance *acpi_perf_data[NR_CPUS]; static struct cpufreq_driver acpi_cpufreq_driver; static unsigned int acpi_pstate_strict; static int acpi_processor_write_port( u16 port, u8 bit_width, u32 value) { if (bit_width <= 8) { outb(value, port); } else if (bit_width <= 16) { outw(value, port); } else if (bit_width <= 32) { outl(value, port); } else { return -ENODEV; } return 0; } static int acpi_processor_read_port( u16 port, u8 bit_width, u32 *ret) { *ret = 0; if (bit_width <= 8) { *ret = inb(port); } else if (bit_width <= 16) { *ret = inw(port); } else if (bit_width <= 32) { *ret = inl(port); } else { return -ENODEV; } return 0; } static int acpi_processor_set_performance ( struct cpufreq_acpi_io *data, unsigned int cpu, int state) { u16 port = 0; u8 bit_width = 0; int i = 0; int ret = 0; u32 value = 0; int retval; struct acpi_processor_performance *perf; dprintk("acpi_processor_set_performance\n"); retval = 0; perf = data->acpi_data; if (state == perf->state) { if (unlikely(data->resume)) { dprintk("Called after resume, resetting to P%d\n", state); data->resume = 0; } else { dprintk("Already at target state (P%d)\n", state); return (retval); } } dprintk("Transitioning from P%d to P%d\n", perf->state, state); /* * First we write the target state's 'control' value to the * control_register. */ port = perf->control_register.address; bit_width = perf->control_register.bit_width; value = (u32) perf->states[state].control; dprintk("Writing 0x%08x to port 0x%04x\n", value, port); ret = acpi_processor_write_port(port, bit_width, value); if (ret) { dprintk("Invalid port width 0x%04x\n", bit_width); return (ret); } /* * Assume the write went through when acpi_pstate_strict is not used. * As read status_register is an expensive operation and there * are no specific error cases where an IO port write will fail. */ if (acpi_pstate_strict) { /* Then we read the 'status_register' and compare the value * with the target state's 'status' to make sure the * transition was successful. * Note that we'll poll for up to 1ms (100 cycles of 10us) * before giving up. */ port = perf->status_register.address; bit_width = perf->status_register.bit_width; dprintk("Looking for 0x%08x from port 0x%04x\n", (u32) perf->states[state].status, port); for (i = 0; i < 100; i++) { ret = acpi_processor_read_port(port, bit_width, &value); if (ret) { dprintk("Invalid port width 0x%04x\n", bit_width); return (ret); } if (value == (u32) perf->states[state].status) break; udelay(10); } } else { value = (u32) perf->states[state].status; } if (unlikely(value != (u32) perf->states[state].status)) { printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); retval = -ENODEV; return (retval); } dprintk("Transition successful after %d microseconds\n", i * 10); perf->state = state; return (retval); } static int acpi_cpufreq_target ( struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; struct acpi_processor_performance *perf; struct cpufreq_freqs freqs; cpumask_t online_policy_cpus; cpumask_t saved_mask; cpumask_t set_mask; cpumask_t covered_cpus; unsigned int cur_state = 0; unsigned int next_state = 0; unsigned int result = 0; unsigned int j; unsigned int tmp; dprintk("acpi_cpufreq_setpolicy\n"); result = cpufreq_frequency_table_target(policy, data->freq_table, target_freq, relation, &next_state); if (unlikely(result)) return (result); perf = data->acpi_data; cur_state = perf->state; freqs.old = data->freq_table[cur_state].frequency; freqs.new = data->freq_table[next_state].frequency; #ifdef CONFIG_HOTPLUG_CPU /* cpufreq holds the hotplug lock, so we are safe from here on */ cpus_and(online_policy_cpus, cpu_online_map, policy->cpus); #else online_policy_cpus = policy->cpus; #endif for_each_cpu_mask(j, online_policy_cpus) { freqs.cpu = j; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); } /* * We need to call driver->target() on all or any CPU in * policy->cpus, depending on policy->shared_type. */ saved_mask = current->cpus_allowed; cpus_clear(covered_cpus); for_each_cpu_mask(j, online_policy_cpus) { /* * Support for SMP systems. * Make sure we are running on CPU that wants to change freq */ cpus_clear(set_mask); if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) cpus_or(set_mask, set_mask, online_policy_cpus); else cpu_set(j, set_mask); set_cpus_allowed(current, set_mask); if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) { dprintk("couldn't limit to CPUs in this domain\n"); result = -EAGAIN; break; } result = acpi_processor_set_performance (data, j, next_state); if (result) { result = -EAGAIN; break; } if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) break; cpu_set(j, covered_cpus); } for_each_cpu_mask(j, online_policy_cpus) { freqs.cpu = j; cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); } if (unlikely(result)) { /* * We have failed halfway through the frequency change. * We have sent callbacks to online_policy_cpus and * acpi_processor_set_performance() has been called on * coverd_cpus. Best effort undo.. */ if (!cpus_empty(covered_cpus)) { for_each_cpu_mask(j, covered_cpus) { policy->cpu = j; acpi_processor_set_performance (data, j, cur_state); } } tmp = freqs.new; freqs.new = freqs.old; freqs.old = tmp; for_each_cpu_mask(j, online_policy_cpus) { freqs.cpu = j; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); } } set_cpus_allowed(current, saved_mask); return (result); } static int acpi_cpufreq_verify ( struct cpufreq_policy *policy) { unsigned int result = 0; struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; dprintk("acpi_cpufreq_verify\n"); result = cpufreq_frequency_table_verify(policy, data->freq_table); return (result); } static unsigned long acpi_cpufreq_guess_freq ( struct cpufreq_acpi_io *data, unsigned int cpu) { struct acpi_processor_performance *perf = data->acpi_data; if (cpu_khz) { /* search the closest match to cpu_khz */ unsigned int i; unsigned long freq; unsigned long freqn = perf->states[0].core_frequency * 1000; for (i = 0; i < (perf->state_count - 1); i++) { freq = freqn; freqn = perf->states[i+1].core_frequency * 1000; if ((2 * cpu_khz) > (freqn + freq)) { perf->state = i; return (freq); } } perf->state = perf->state_count - 1; return (freqn); } else { /* assume CPU is at P0... */ perf->state = 0; return perf->states[0].core_frequency * 1000; } } /* * acpi_cpufreq_early_init - initialize ACPI P-States library * * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) * in order to determine correct frequency and voltage pairings. We can * do _PDC and _PSD and find out the processor dependency for the * actual init that will happen later... */ static int acpi_cpufreq_early_init_acpi(void) { struct acpi_processor_performance *data; unsigned int i, j; dprintk("acpi_cpufreq_early_init\n"); for_each_possible_cpu(i) { data = kzalloc(sizeof(struct acpi_processor_performance), GFP_KERNEL); if (!data) { for_each_possible_cpu(j) { kfree(acpi_perf_data[j]); acpi_perf_data[j] = NULL; } return (-ENOMEM); } acpi_perf_data[i] = data; } /* Do initialization in ACPI core */ return acpi_processor_preregister_performance(acpi_perf_data); } static int acpi_cpufreq_cpu_init ( struct cpufreq_policy *policy) { unsigned int i; unsigned int cpu = policy->cpu; struct cpufreq_acpi_io *data; unsigned int result = 0; struct cpuinfo_x86 *c = &cpu_data[policy->cpu]; struct acpi_processor_performance *perf; dprintk("acpi_cpufreq_cpu_init\n"); if (!acpi_perf_data[cpu]) return (-ENODEV); data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); if (!data) return (-ENOMEM); data->acpi_data = acpi_perf_data[cpu]; acpi_io_data[cpu] = data; result = acpi_processor_register_performance(data->acpi_data, cpu); if (result) goto err_free; perf = data->acpi_data; policy->shared_type = perf->shared_type; /* * Will let policy->cpus know about dependency only when software * coordination is required. */ if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) policy->cpus = perf->shared_cpu_map; if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; } /* capability check */ if (perf->state_count <= 1) { dprintk("No P-States\n"); result = -ENODEV; goto err_unreg; } if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { dprintk("Unsupported address space [%d, %d]\n", (u32) (perf->control_register.space_id), (u32) (perf->status_register.space_id)); result = -ENODEV; goto err_unreg; } /* alloc freq_table */ data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL); if (!data->freq_table) { result = -ENOMEM; goto err_unreg; } /* detect transition latency */ policy->cpuinfo.transition_latency = 0; for (i=0; istate_count; i++) { if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000; } policy->governor = CPUFREQ_DEFAULT_GOVERNOR; /* The current speed is unknown and not detectable by ACPI... */ policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); /* table init */ for (i=0; i<=perf->state_count; i++) { data->freq_table[i].index = i; if (istate_count) data->freq_table[i].frequency = perf->states[i].core_frequency * 1000; else data->freq_table[i].frequency = CPUFREQ_TABLE_END; } result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); if (result) { goto err_freqfree; } /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", cpu); for (i = 0; i < perf->state_count; i++) dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", (i == perf->state?'*':' '), i, (u32) perf->states[i].core_frequency, (u32) perf->states[i].power, (u32) perf->states[i].transition_latency); cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); /* * the first call to ->target() should result in us actually * writing something to the appropriate registers. */ data->resume = 1; return (result); err_freqfree: kfree(data->freq_table); err_unreg: acpi_processor_unregister_performance(perf, cpu); err_free: kfree(data); acpi_io_data[cpu] = NULL; return (result); } static int acpi_cpufreq_cpu_exit ( struct cpufreq_policy *policy) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; dprintk("acpi_cpufreq_cpu_exit\n"); if (data) { cpufreq_frequency_table_put_attr(policy->cpu); acpi_io_data[policy->cpu] = NULL; acpi_processor_unregister_performance(data->acpi_data, policy->cpu); kfree(data); } return (0); } static int acpi_cpufreq_resume ( struct cpufreq_policy *policy) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; dprintk("acpi_cpufreq_resume\n"); data->resume = 1; return (0); } static struct freq_attr* acpi_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver acpi_cpufreq_driver = { .verify = acpi_cpufreq_verify, .target = acpi_cpufreq_target, .init = acpi_cpufreq_cpu_init, .exit = acpi_cpufreq_cpu_exit, .resume = acpi_cpufreq_resume, .name = "acpi-cpufreq", .owner = THIS_MODULE, .attr = acpi_cpufreq_attr, .flags = CPUFREQ_STICKY, }; static int __init acpi_cpufreq_init (void) { dprintk("acpi_cpufreq_init\n"); acpi_cpufreq_early_init_acpi(); return cpufreq_register_driver(&acpi_cpufreq_driver); } static void __exit acpi_cpufreq_exit (void) { unsigned int i; dprintk("acpi_cpufreq_exit\n"); cpufreq_unregister_driver(&acpi_cpufreq_driver); for_each_possible_cpu(i) { kfree(acpi_perf_data[i]); acpi_perf_data[i] = NULL; } return; } module_param(acpi_pstate_strict, uint, 0644); MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes."); late_initcall(acpi_cpufreq_init); module_exit(acpi_cpufreq_exit); MODULE_ALIAS("acpi");