/* * Routines to indentify caches on Intel CPU. * * Changes: * Venkatesh Pallipadi : Adding cache identification through cpuid(4) */ #include <linux/init.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/compiler.h> #include <linux/cpu.h> #include <asm/processor.h> #include <asm/smp.h> #define LVL_1_INST 1 #define LVL_1_DATA 2 #define LVL_2 3 #define LVL_3 4 #define LVL_TRACE 5 struct _cache_table { unsigned char descriptor; char cache_type; short size; }; /* all the cache descriptor types we care about (no TLB or trace cache entries) */ static struct _cache_table cache_table[] __initdata = { { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */ { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */ { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */ { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */ { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */ { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */ { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */ { 0x00, 0, 0} }; enum _cache_type { CACHE_TYPE_NULL = 0, CACHE_TYPE_DATA = 1, CACHE_TYPE_INST = 2, CACHE_TYPE_UNIFIED = 3 }; union _cpuid4_leaf_eax { struct { enum _cache_type type:5; unsigned int level:3; unsigned int is_self_initializing:1; unsigned int is_fully_associative:1; unsigned int reserved:4; unsigned int num_threads_sharing:12; unsigned int num_cores_on_die:6; } split; u32 full; }; union _cpuid4_leaf_ebx { struct { unsigned int coherency_line_size:12; unsigned int physical_line_partition:10; unsigned int ways_of_associativity:10; } split; u32 full; }; union _cpuid4_leaf_ecx { struct { unsigned int number_of_sets:32; } split; u32 full; }; struct _cpuid4_info { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned long size; cpumask_t shared_cpu_map; }; #define MAX_CACHE_LEAVES 4 static unsigned short num_cache_leaves; static int __devinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf) { unsigned int eax, ebx, ecx, edx; union _cpuid4_leaf_eax cache_eax; cpuid_count(4, index, &eax, &ebx, &ecx, &edx); cache_eax.full = eax; if (cache_eax.split.type == CACHE_TYPE_NULL) return -1; this_leaf->eax.full = eax; this_leaf->ebx.full = ebx; this_leaf->ecx.full = ecx; this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) * (this_leaf->ebx.split.coherency_line_size + 1) * (this_leaf->ebx.split.physical_line_partition + 1) * (this_leaf->ebx.split.ways_of_associativity + 1); return 0; } static int __init find_num_cache_leaves(void) { unsigned int eax, ebx, ecx, edx; union _cpuid4_leaf_eax cache_eax; int i; int retval; retval = MAX_CACHE_LEAVES; /* Do cpuid(4) loop to find out num_cache_leaves */ for (i = 0; i < MAX_CACHE_LEAVES; i++) { cpuid_count(4, i, &eax, &ebx, &ecx, &edx); cache_eax.full = eax; if (cache_eax.split.type == CACHE_TYPE_NULL) { retval = i; break; } } return retval; } unsigned int __init init_intel_cacheinfo(struct cpuinfo_x86 *c) { unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */ unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ if (c->cpuid_level > 4) { static int is_initialized; if (is_initialized == 0) { /* Init num_cache_leaves from boot CPU */ num_cache_leaves = find_num_cache_leaves(); is_initialized++; } /* * Whenever possible use cpuid(4), deterministic cache * parameters cpuid leaf to find the cache details */ for (i = 0; i < num_cache_leaves; i++) { struct _cpuid4_info this_leaf; int retval; retval = cpuid4_cache_lookup(i, &this_leaf); if (retval >= 0) { switch(this_leaf.eax.split.level) { case 1: if (this_leaf.eax.split.type == CACHE_TYPE_DATA) new_l1d = this_leaf.size/1024; else if (this_leaf.eax.split.type == CACHE_TYPE_INST) new_l1i = this_leaf.size/1024; break; case 2: new_l2 = this_leaf.size/1024; break; case 3: new_l3 = this_leaf.size/1024; break; default: break; } } } } if (c->cpuid_level > 1) { /* supports eax=2 call */ int i, j, n; int regs[4]; unsigned char *dp = (unsigned char *)regs; /* Number of times to iterate */ n = cpuid_eax(2) & 0xFF; for ( i = 0 ; i < n ; i++ ) { cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); /* If bit 31 is set, this is an unknown format */ for ( j = 0 ; j < 3 ; j++ ) { if ( regs[j] < 0 ) regs[j] = 0; } /* Byte 0 is level count, not a descriptor */ for ( j = 1 ; j < 16 ; j++ ) { unsigned char des = dp[j]; unsigned char k = 0; /* look up this descriptor in the table */ while (cache_table[k].descriptor != 0) { if (cache_table[k].descriptor == des) { switch (cache_table[k].cache_type) { case LVL_1_INST: l1i += cache_table[k].size; break; case LVL_1_DATA: l1d += cache_table[k].size; break; case LVL_2: l2 += cache_table[k].size; break; case LVL_3: l3 += cache_table[k].size; break; case LVL_TRACE: trace += cache_table[k].size; break; } break; } k++; } } } if (new_l1d) l1d = new_l1d; if (new_l1i) l1i = new_l1i; if (new_l2) l2 = new_l2; if (new_l3) l3 = new_l3; if ( trace ) printk (KERN_INFO "CPU: Trace cache: %dK uops", trace); else if ( l1i ) printk (KERN_INFO "CPU: L1 I cache: %dK", l1i); if ( l1d ) printk(", L1 D cache: %dK\n", l1d); else printk("\n"); if ( l2 ) printk(KERN_INFO "CPU: L2 cache: %dK\n", l2); if ( l3 ) printk(KERN_INFO "CPU: L3 cache: %dK\n", l3); /* * This assumes the L3 cache is shared; it typically lives in * the northbridge. The L1 caches are included by the L2 * cache, and so should not be included for the purpose of * SMP switching weights. */ c->x86_cache_size = l2 ? l2 : (l1i+l1d); } return l2; } /* pointer to _cpuid4_info array (for each cache leaf) */ static struct _cpuid4_info *cpuid4_info[NR_CPUS]; #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y])) #ifdef CONFIG_SMP static void __devinit cache_shared_cpu_map_setup(unsigned int cpu, int index) { struct _cpuid4_info *this_leaf; unsigned long num_threads_sharing; this_leaf = CPUID4_INFO_IDX(cpu, index); num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing; if (num_threads_sharing == 1) cpu_set(cpu, this_leaf->shared_cpu_map); #ifdef CONFIG_X86_HT else if (num_threads_sharing == smp_num_siblings) this_leaf->shared_cpu_map = cpu_sibling_map[cpu]; #endif else printk(KERN_INFO "Number of CPUs sharing cache didn't match " "any known set of CPUs\n"); } #else static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {} #endif static void free_cache_attributes(unsigned int cpu) { kfree(cpuid4_info[cpu]); cpuid4_info[cpu] = NULL; } static int __devinit detect_cache_attributes(unsigned int cpu) { struct _cpuid4_info *this_leaf; unsigned long j; int retval; if (num_cache_leaves == 0) return -ENOENT; cpuid4_info[cpu] = kmalloc( sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL); if (unlikely(cpuid4_info[cpu] == NULL)) return -ENOMEM; memset(cpuid4_info[cpu], 0, sizeof(struct _cpuid4_info) * num_cache_leaves); /* Do cpuid and store the results */ for (j = 0; j < num_cache_leaves; j++) { this_leaf = CPUID4_INFO_IDX(cpu, j); retval = cpuid4_cache_lookup(j, this_leaf); if (unlikely(retval < 0)) goto err_out; cache_shared_cpu_map_setup(cpu, j); } return 0; err_out: free_cache_attributes(cpu); return -ENOMEM; } #ifdef CONFIG_SYSFS #include <linux/kobject.h> #include <linux/sysfs.h> extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */ /* pointer to kobject for cpuX/cache */ static struct kobject * cache_kobject[NR_CPUS]; struct _index_kobject { struct kobject kobj; unsigned int cpu; unsigned short index; }; /* pointer to array of kobjects for cpuX/cache/indexY */ static struct _index_kobject *index_kobject[NR_CPUS]; #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y])) #define show_one_plus(file_name, object, val) \ static ssize_t show_##file_name \ (struct _cpuid4_info *this_leaf, char *buf) \ { \ return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \ } show_one_plus(level, eax.split.level, 0); show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1); show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1); show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1); show_one_plus(number_of_sets, ecx.split.number_of_sets, 1); static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf) { return sprintf (buf, "%luK\n", this_leaf->size / 1024); } static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf) { char mask_str[NR_CPUS]; cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map); return sprintf(buf, "%s\n", mask_str); } static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) { switch(this_leaf->eax.split.type) { case CACHE_TYPE_DATA: return sprintf(buf, "Data\n"); break; case CACHE_TYPE_INST: return sprintf(buf, "Instruction\n"); break; case CACHE_TYPE_UNIFIED: return sprintf(buf, "Unified\n"); break; default: return sprintf(buf, "Unknown\n"); break; } } struct _cache_attr { struct attribute attr; ssize_t (*show)(struct _cpuid4_info *, char *); ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count); }; #define define_one_ro(_name) \ static struct _cache_attr _name = \ __ATTR(_name, 0444, show_##_name, NULL) define_one_ro(level); define_one_ro(type); define_one_ro(coherency_line_size); define_one_ro(physical_line_partition); define_one_ro(ways_of_associativity); define_one_ro(number_of_sets); define_one_ro(size); define_one_ro(shared_cpu_map); static struct attribute * default_attrs[] = { &type.attr, &level.attr, &coherency_line_size.attr, &physical_line_partition.attr, &ways_of_associativity.attr, &number_of_sets.attr, &size.attr, &shared_cpu_map.attr, NULL }; #define to_object(k) container_of(k, struct _index_kobject, kobj) #define to_attr(a) container_of(a, struct _cache_attr, attr) static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf) { struct _cache_attr *fattr = to_attr(attr); struct _index_kobject *this_leaf = to_object(kobj); ssize_t ret; ret = fattr->show ? fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index), buf) : 0; return ret; } static ssize_t store(struct kobject * kobj, struct attribute * attr, const char * buf, size_t count) { return 0; } static struct sysfs_ops sysfs_ops = { .show = show, .store = store, }; static struct kobj_type ktype_cache = { .sysfs_ops = &sysfs_ops, .default_attrs = default_attrs, }; static struct kobj_type ktype_percpu_entry = { .sysfs_ops = &sysfs_ops, }; static void cpuid4_cache_sysfs_exit(unsigned int cpu) { kfree(cache_kobject[cpu]); kfree(index_kobject[cpu]); cache_kobject[cpu] = NULL; index_kobject[cpu] = NULL; free_cache_attributes(cpu); } static int __devinit cpuid4_cache_sysfs_init(unsigned int cpu) { if (num_cache_leaves == 0) return -ENOENT; detect_cache_attributes(cpu); if (cpuid4_info[cpu] == NULL) return -ENOENT; /* Allocate all required memory */ cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL); if (unlikely(cache_kobject[cpu] == NULL)) goto err_out; memset(cache_kobject[cpu], 0, sizeof(struct kobject)); index_kobject[cpu] = kmalloc( sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL); if (unlikely(index_kobject[cpu] == NULL)) goto err_out; memset(index_kobject[cpu], 0, sizeof(struct _index_kobject) * num_cache_leaves); return 0; err_out: cpuid4_cache_sysfs_exit(cpu); return -ENOMEM; } /* Add/Remove cache interface for CPU device */ static int __devinit cache_add_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i, j; struct _index_kobject *this_object; int retval = 0; retval = cpuid4_cache_sysfs_init(cpu); if (unlikely(retval < 0)) return retval; cache_kobject[cpu]->parent = &sys_dev->kobj; kobject_set_name(cache_kobject[cpu], "%s", "cache"); cache_kobject[cpu]->ktype = &ktype_percpu_entry; retval = kobject_register(cache_kobject[cpu]); for (i = 0; i < num_cache_leaves; i++) { this_object = INDEX_KOBJECT_PTR(cpu,i); this_object->cpu = cpu; this_object->index = i; this_object->kobj.parent = cache_kobject[cpu]; kobject_set_name(&(this_object->kobj), "index%1lu", i); this_object->kobj.ktype = &ktype_cache; retval = kobject_register(&(this_object->kobj)); if (unlikely(retval)) { for (j = 0; j < i; j++) { kobject_unregister( &(INDEX_KOBJECT_PTR(cpu,j)->kobj)); } kobject_unregister(cache_kobject[cpu]); cpuid4_cache_sysfs_exit(cpu); break; } } return retval; } static int __devexit cache_remove_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i; for (i = 0; i < num_cache_leaves; i++) kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj)); kobject_unregister(cache_kobject[cpu]); cpuid4_cache_sysfs_exit(cpu); return 0; } static struct sysdev_driver cache_sysdev_driver = { .add = cache_add_dev, .remove = __devexit_p(cache_remove_dev), }; /* Register/Unregister the cpu_cache driver */ static int __devinit cache_register_driver(void) { if (num_cache_leaves == 0) return 0; return sysdev_driver_register(&cpu_sysdev_class,&cache_sysdev_driver); } device_initcall(cache_register_driver); #endif