/* * linux/arch/i386/kernel/setup.c * * Copyright (C) 1995 Linus Torvalds * * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * * Memory region support * David Parsons <orc@pell.chi.il.us>, July-August 1999 * * Added E820 sanitization routine (removes overlapping memory regions); * Brian Moyle <bmoyle@mvista.com>, February 2001 * * Moved CPU detection code to cpu/${cpu}.c * Patrick Mochel <mochel@osdl.org>, March 2002 * * Provisions for empty E820 memory regions (reported by certain BIOSes). * Alex Achenbach <xela@slit.de>, December 2002. * */ /* * This file handles the architecture-dependent parts of initialization */ #include <linux/sched.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/screen_info.h> #include <linux/ioport.h> #include <linux/acpi.h> #include <linux/apm_bios.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/seq_file.h> #include <linux/platform_device.h> #include <linux/console.h> #include <linux/mca.h> #include <linux/root_dev.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/efi.h> #include <linux/init.h> #include <linux/edd.h> #include <linux/nodemask.h> #include <linux/kexec.h> #include <linux/crash_dump.h> #include <linux/dmi.h> #include <linux/pfn.h> #include <video/edid.h> #include <asm/apic.h> #include <asm/e820.h> #include <asm/mpspec.h> #include <asm/setup.h> #include <asm/arch_hooks.h> #include <asm/sections.h> #include <asm/io_apic.h> #include <asm/ist.h> #include <asm/io.h> #include <setup_arch.h> #include <bios_ebda.h> /* Forward Declaration. */ void __init find_max_pfn(void); /* This value is set up by the early boot code to point to the value immediately after the boot time page tables. It contains a *physical* address, and must not be in the .bss segment! */ unsigned long init_pg_tables_end __initdata = ~0UL; int disable_pse __devinitdata = 0; /* * Machine setup.. */ #ifdef CONFIG_EFI int efi_enabled = 0; EXPORT_SYMBOL(efi_enabled); #endif /* cpu data as detected by the assembly code in head.S */ struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; /* common cpu data for all cpus */ struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; EXPORT_SYMBOL(boot_cpu_data); unsigned long mmu_cr4_features; /* for MCA, but anyone else can use it if they want */ unsigned int machine_id; #ifdef CONFIG_MCA EXPORT_SYMBOL(machine_id); #endif unsigned int machine_submodel_id; unsigned int BIOS_revision; unsigned int mca_pentium_flag; /* For PCI or other memory-mapped resources */ unsigned long pci_mem_start = 0x10000000; #ifdef CONFIG_PCI EXPORT_SYMBOL(pci_mem_start); #endif /* Boot loader ID as an integer, for the benefit of proc_dointvec */ int bootloader_type; /* user-defined highmem size */ static unsigned int highmem_pages = -1; /* * Setup options */ struct drive_info_struct { char dummy[32]; } drive_info; #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \ defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE) EXPORT_SYMBOL(drive_info); #endif struct screen_info screen_info; EXPORT_SYMBOL(screen_info); struct apm_info apm_info; EXPORT_SYMBOL(apm_info); struct sys_desc_table_struct { unsigned short length; unsigned char table[0]; }; struct edid_info edid_info; EXPORT_SYMBOL_GPL(edid_info); struct ist_info ist_info; #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) EXPORT_SYMBOL(ist_info); #endif struct e820map e820; extern void early_cpu_init(void); extern int root_mountflags; unsigned long saved_videomode; #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 static char command_line[COMMAND_LINE_SIZE]; unsigned char __initdata boot_params[PARAM_SIZE]; static struct resource data_resource = { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource code_resource = { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource system_rom_resource = { .name = "System ROM", .start = 0xf0000, .end = 0xfffff, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }; static struct resource extension_rom_resource = { .name = "Extension ROM", .start = 0xe0000, .end = 0xeffff, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }; static struct resource adapter_rom_resources[] = { { .name = "Adapter ROM", .start = 0xc8000, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }, { .name = "Adapter ROM", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }, { .name = "Adapter ROM", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }, { .name = "Adapter ROM", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }, { .name = "Adapter ROM", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }, { .name = "Adapter ROM", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM } }; #define ADAPTER_ROM_RESOURCES \ (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0]) static struct resource video_rom_resource = { .name = "Video ROM", .start = 0xc0000, .end = 0xc7fff, .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM }; static struct resource video_ram_resource = { .name = "Video RAM area", .start = 0xa0000, .end = 0xbffff, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; static struct resource standard_io_resources[] = { { .name = "dma1", .start = 0x0000, .end = 0x001f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic1", .start = 0x0020, .end = 0x0021, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer0", .start = 0x0040, .end = 0x0043, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "timer1", .start = 0x0050, .end = 0x0053, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "keyboard", .start = 0x0060, .end = 0x006f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma page reg", .start = 0x0080, .end = 0x008f, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "pic2", .start = 0x00a0, .end = 0x00a1, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "dma2", .start = 0x00c0, .end = 0x00df, .flags = IORESOURCE_BUSY | IORESOURCE_IO }, { .name = "fpu", .start = 0x00f0, .end = 0x00ff, .flags = IORESOURCE_BUSY | IORESOURCE_IO } }; #define STANDARD_IO_RESOURCES \ (sizeof standard_io_resources / sizeof standard_io_resources[0]) #define romsignature(x) (*(unsigned short *)(x) == 0xaa55) static int __init romchecksum(unsigned char *rom, unsigned long length) { unsigned char *p, sum = 0; for (p = rom; p < rom + length; p++) sum += *p; return sum == 0; } static void __init probe_roms(void) { unsigned long start, length, upper; unsigned char *rom; int i; /* video rom */ upper = adapter_rom_resources[0].start; for (start = video_rom_resource.start; start < upper; start += 2048) { rom = isa_bus_to_virt(start); if (!romsignature(rom)) continue; video_rom_resource.start = start; /* 0 < length <= 0x7f * 512, historically */ length = rom[2] * 512; /* if checksum okay, trust length byte */ if (length && romchecksum(rom, length)) video_rom_resource.end = start + length - 1; request_resource(&iomem_resource, &video_rom_resource); break; } start = (video_rom_resource.end + 1 + 2047) & ~2047UL; if (start < upper) start = upper; /* system rom */ request_resource(&iomem_resource, &system_rom_resource); upper = system_rom_resource.start; /* check for extension rom (ignore length byte!) */ rom = isa_bus_to_virt(extension_rom_resource.start); if (romsignature(rom)) { length = extension_rom_resource.end - extension_rom_resource.start + 1; if (romchecksum(rom, length)) { request_resource(&iomem_resource, &extension_rom_resource); upper = extension_rom_resource.start; } } /* check for adapter roms on 2k boundaries */ for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) { rom = isa_bus_to_virt(start); if (!romsignature(rom)) continue; /* 0 < length <= 0x7f * 512, historically */ length = rom[2] * 512; /* but accept any length that fits if checksum okay */ if (!length || start + length > upper || !romchecksum(rom, length)) continue; adapter_rom_resources[i].start = start; adapter_rom_resources[i].end = start + length - 1; request_resource(&iomem_resource, &adapter_rom_resources[i]); start = adapter_rom_resources[i++].end & ~2047UL; } } static void __init limit_regions(unsigned long long size) { unsigned long long current_addr = 0; int i; if (efi_enabled) { efi_memory_desc_t *md; void *p; for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) { md = p; current_addr = md->phys_addr + (md->num_pages << 12); if (md->type == EFI_CONVENTIONAL_MEMORY) { if (current_addr >= size) { md->num_pages -= (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT); memmap.nr_map = i + 1; return; } } } } for (i = 0; i < e820.nr_map; i++) { current_addr = e820.map[i].addr + e820.map[i].size; if (current_addr < size) continue; if (e820.map[i].type != E820_RAM) continue; if (e820.map[i].addr >= size) { /* * This region starts past the end of the * requested size, skip it completely. */ e820.nr_map = i; } else { e820.nr_map = i + 1; e820.map[i].size -= current_addr - size; } return; } } void __init add_memory_region(unsigned long long start, unsigned long long size, int type) { int x; if (!efi_enabled) { x = e820.nr_map; if (x == E820MAX) { printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); return; } e820.map[x].addr = start; e820.map[x].size = size; e820.map[x].type = type; e820.nr_map++; } } /* add_memory_region */ #define E820_DEBUG 1 static void __init print_memory_map(char *who) { int i; for (i = 0; i < e820.nr_map; i++) { printk(" %s: %016Lx - %016Lx ", who, e820.map[i].addr, e820.map[i].addr + e820.map[i].size); switch (e820.map[i].type) { case E820_RAM: printk("(usable)\n"); break; case E820_RESERVED: printk("(reserved)\n"); break; case E820_ACPI: printk("(ACPI data)\n"); break; case E820_NVS: printk("(ACPI NVS)\n"); break; default: printk("type %lu\n", e820.map[i].type); break; } } } /* * Sanitize the BIOS e820 map. * * Some e820 responses include overlapping entries. The following * replaces the original e820 map with a new one, removing overlaps. * */ struct change_member { struct e820entry *pbios; /* pointer to original bios entry */ unsigned long long addr; /* address for this change point */ }; static struct change_member change_point_list[2*E820MAX] __initdata; static struct change_member *change_point[2*E820MAX] __initdata; static struct e820entry *overlap_list[E820MAX] __initdata; static struct e820entry new_bios[E820MAX] __initdata; int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map) { struct change_member *change_tmp; unsigned long current_type, last_type; unsigned long long last_addr; int chgidx, still_changing; int overlap_entries; int new_bios_entry; int old_nr, new_nr, chg_nr; int i; /* Visually we're performing the following (1,2,3,4 = memory types)... Sample memory map (w/overlaps): ____22__________________ ______________________4_ ____1111________________ _44_____________________ 11111111________________ ____________________33__ ___________44___________ __________33333_________ ______________22________ ___________________2222_ _________111111111______ _____________________11_ _________________4______ Sanitized equivalent (no overlap): 1_______________________ _44_____________________ ___1____________________ ____22__________________ ______11________________ _________1______________ __________3_____________ ___________44___________ _____________33_________ _______________2________ ________________1_______ _________________4______ ___________________2____ ____________________33__ ______________________4_ */ /* if there's only one memory region, don't bother */ if (*pnr_map < 2) return -1; old_nr = *pnr_map; /* bail out if we find any unreasonable addresses in bios map */ for (i=0; i<old_nr; i++) if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) return -1; /* create pointers for initial change-point information (for sorting) */ for (i=0; i < 2*old_nr; i++) change_point[i] = &change_point_list[i]; /* record all known change-points (starting and ending addresses), omitting those that are for empty memory regions */ chgidx = 0; for (i=0; i < old_nr; i++) { if (biosmap[i].size != 0) { change_point[chgidx]->addr = biosmap[i].addr; change_point[chgidx++]->pbios = &biosmap[i]; change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size; change_point[chgidx++]->pbios = &biosmap[i]; } } chg_nr = chgidx; /* true number of change-points */ /* sort change-point list by memory addresses (low -> high) */ still_changing = 1; while (still_changing) { still_changing = 0; for (i=1; i < chg_nr; i++) { /* if <current_addr> > <last_addr>, swap */ /* or, if current=<start_addr> & last=<end_addr>, swap */ if ((change_point[i]->addr < change_point[i-1]->addr) || ((change_point[i]->addr == change_point[i-1]->addr) && (change_point[i]->addr == change_point[i]->pbios->addr) && (change_point[i-1]->addr != change_point[i-1]->pbios->addr)) ) { change_tmp = change_point[i]; change_point[i] = change_point[i-1]; change_point[i-1] = change_tmp; still_changing=1; } } } /* create a new bios memory map, removing overlaps */ overlap_entries=0; /* number of entries in the overlap table */ new_bios_entry=0; /* index for creating new bios map entries */ last_type = 0; /* start with undefined memory type */ last_addr = 0; /* start with 0 as last starting address */ /* loop through change-points, determining affect on the new bios map */ for (chgidx=0; chgidx < chg_nr; chgidx++) { /* keep track of all overlapping bios entries */ if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr) { /* add map entry to overlap list (> 1 entry implies an overlap) */ overlap_list[overlap_entries++]=change_point[chgidx]->pbios; } else { /* remove entry from list (order independent, so swap with last) */ for (i=0; i<overlap_entries; i++) { if (overlap_list[i] == change_point[chgidx]->pbios) overlap_list[i] = overlap_list[overlap_entries-1]; } overlap_entries--; } /* if there are overlapping entries, decide which "type" to use */ /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */ current_type = 0; for (i=0; i<overlap_entries; i++) if (overlap_list[i]->type > current_type) current_type = overlap_list[i]->type; /* continue building up new bios map based on this information */ if (current_type != last_type) { if (last_type != 0) { new_bios[new_bios_entry].size = change_point[chgidx]->addr - last_addr; /* move forward only if the new size was non-zero */ if (new_bios[new_bios_entry].size != 0) if (++new_bios_entry >= E820MAX) break; /* no more space left for new bios entries */ } if (current_type != 0) { new_bios[new_bios_entry].addr = change_point[chgidx]->addr; new_bios[new_bios_entry].type = current_type; last_addr=change_point[chgidx]->addr; } last_type = current_type; } } new_nr = new_bios_entry; /* retain count for new bios entries */ /* copy new bios mapping into original location */ memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry)); *pnr_map = new_nr; return 0; } /* * Copy the BIOS e820 map into a safe place. * * Sanity-check it while we're at it.. * * If we're lucky and live on a modern system, the setup code * will have given us a memory map that we can use to properly * set up memory. If we aren't, we'll fake a memory map. * * We check to see that the memory map contains at least 2 elements * before we'll use it, because the detection code in setup.S may * not be perfect and most every PC known to man has two memory * regions: one from 0 to 640k, and one from 1mb up. (The IBM * thinkpad 560x, for example, does not cooperate with the memory * detection code.) */ int __init copy_e820_map(struct e820entry * biosmap, int nr_map) { /* Only one memory region (or negative)? Ignore it */ if (nr_map < 2) return -1; do { unsigned long long start = biosmap->addr; unsigned long long size = biosmap->size; unsigned long long end = start + size; unsigned long type = biosmap->type; /* Overflow in 64 bits? Ignore the memory map. */ if (start > end) return -1; /* * Some BIOSes claim RAM in the 640k - 1M region. * Not right. Fix it up. */ if (type == E820_RAM) { if (start < 0x100000ULL && end > 0xA0000ULL) { if (start < 0xA0000ULL) add_memory_region(start, 0xA0000ULL-start, type); if (end <= 0x100000ULL) continue; start = 0x100000ULL; size = end - start; } } add_memory_region(start, size, type); } while (biosmap++,--nr_map); return 0; } #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) struct edd edd; #ifdef CONFIG_EDD_MODULE EXPORT_SYMBOL(edd); #endif /** * copy_edd() - Copy the BIOS EDD information * from boot_params into a safe place. * */ static inline void copy_edd(void) { memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature)); memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info)); edd.mbr_signature_nr = EDD_MBR_SIG_NR; edd.edd_info_nr = EDD_NR; } #else static inline void copy_edd(void) { } #endif static int __initdata user_defined_memmap = 0; /* * "mem=nopentium" disables the 4MB page tables. * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM * to <mem>, overriding the bios size. * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from * <start> to <start>+<mem>, overriding the bios size. * * HPA tells me bootloaders need to parse mem=, so no new * option should be mem= [also see Documentation/i386/boot.txt] */ static int __init parse_mem(char *arg) { if (!arg) return -EINVAL; if (strcmp(arg, "nopentium") == 0) { clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability); disable_pse = 1; } else { /* If the user specifies memory size, we * limit the BIOS-provided memory map to * that size. exactmap can be used to specify * the exact map. mem=number can be used to * trim the existing memory map. */ unsigned long long mem_size; mem_size = memparse(arg, &arg); limit_regions(mem_size); user_defined_memmap = 1; } return 0; } early_param("mem", parse_mem); static int __init parse_memmap(char *arg) { if (!arg) return -EINVAL; if (strcmp(arg, "exactmap") == 0) { #ifdef CONFIG_CRASH_DUMP /* If we are doing a crash dump, we * still need to know the real mem * size before original memory map is * reset. */ find_max_pfn(); saved_max_pfn = max_pfn; #endif e820.nr_map = 0; user_defined_memmap = 1; } else { /* If the user specifies memory size, we * limit the BIOS-provided memory map to * that size. exactmap can be used to specify * the exact map. mem=number can be used to * trim the existing memory map. */ unsigned long long start_at, mem_size; mem_size = memparse(arg, &arg); if (*arg == '@') { start_at = memparse(arg+1, &arg); add_memory_region(start_at, mem_size, E820_RAM); } else if (*arg == '#') { start_at = memparse(arg+1, &arg); add_memory_region(start_at, mem_size, E820_ACPI); } else if (*arg == '$') { start_at = memparse(arg+1, &arg); add_memory_region(start_at, mem_size, E820_RESERVED); } else { limit_regions(mem_size); user_defined_memmap = 1; } } return 0; } early_param("memmap", parse_memmap); #ifdef CONFIG_PROC_VMCORE /* elfcorehdr= specifies the location of elf core header * stored by the crashed kernel. */ static int __init parse_elfcorehdr(char *arg) { if (!arg) return -EINVAL; elfcorehdr_addr = memparse(arg, &arg); return 0; } early_param("elfcorehdr", parse_elfcorehdr); #endif /* CONFIG_PROC_VMCORE */ /* * highmem=size forces highmem to be exactly 'size' bytes. * This works even on boxes that have no highmem otherwise. * This also works to reduce highmem size on bigger boxes. */ static int __init parse_highmem(char *arg) { if (!arg) return -EINVAL; highmem_pages = memparse(arg, &arg) >> PAGE_SHIFT; return 0; } early_param("highmem", parse_highmem); /* * vmalloc=size forces the vmalloc area to be exactly 'size' * bytes. This can be used to increase (or decrease) the * vmalloc area - the default is 128m. */ static int __init parse_vmalloc(char *arg) { if (!arg) return -EINVAL; __VMALLOC_RESERVE = memparse(arg, &arg); return 0; } early_param("vmalloc", parse_vmalloc); /* * Callback for efi_memory_walk. */ static int __init efi_find_max_pfn(unsigned long start, unsigned long end, void *arg) { unsigned long *max_pfn = arg, pfn; if (start < end) { pfn = PFN_UP(end -1); if (pfn > *max_pfn) *max_pfn = pfn; } return 0; } static int __init efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg) { memory_present(0, start, end); return 0; } /* * This function checks if the entire range <start,end> is mapped with type. * * Note: this function only works correct if the e820 table is sorted and * not-overlapping, which is the case */ int __init e820_all_mapped(unsigned long s, unsigned long e, unsigned type) { u64 start = s; u64 end = e; int i; for (i = 0; i < e820.nr_map; i++) { struct e820entry *ei = &e820.map[i]; if (type && ei->type != type) continue; /* is the region (part) in overlap with the current region ?*/ if (ei->addr >= end || ei->addr + ei->size <= start) continue; /* if the region is at the beginning of <start,end> we move * start to the end of the region since it's ok until there */ if (ei->addr <= start) start = ei->addr + ei->size; /* if start is now at or beyond end, we're done, full * coverage */ if (start >= end) return 1; /* we're done */ } return 0; } /* * Find the highest page frame number we have available */ void __init find_max_pfn(void) { int i; max_pfn = 0; if (efi_enabled) { efi_memmap_walk(efi_find_max_pfn, &max_pfn); efi_memmap_walk(efi_memory_present_wrapper, NULL); return; } for (i = 0; i < e820.nr_map; i++) { unsigned long start, end; /* RAM? */ if (e820.map[i].type != E820_RAM) continue; start = PFN_UP(e820.map[i].addr); end = PFN_DOWN(e820.map[i].addr + e820.map[i].size); if (start >= end) continue; if (end > max_pfn) max_pfn = end; memory_present(0, start, end); } } /* * Determine low and high memory ranges: */ unsigned long __init find_max_low_pfn(void) { unsigned long max_low_pfn; max_low_pfn = max_pfn; if (max_low_pfn > MAXMEM_PFN) { if (highmem_pages == -1) highmem_pages = max_pfn - MAXMEM_PFN; if (highmem_pages + MAXMEM_PFN < max_pfn) max_pfn = MAXMEM_PFN + highmem_pages; if (highmem_pages + MAXMEM_PFN > max_pfn) { printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages)); highmem_pages = 0; } max_low_pfn = MAXMEM_PFN; #ifndef CONFIG_HIGHMEM /* Maximum memory usable is what is directly addressable */ printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20); if (max_pfn > MAX_NONPAE_PFN) printk(KERN_WARNING "Use a PAE enabled kernel.\n"); else printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); max_pfn = MAXMEM_PFN; #else /* !CONFIG_HIGHMEM */ #ifndef CONFIG_X86_PAE if (max_pfn > MAX_NONPAE_PFN) { max_pfn = MAX_NONPAE_PFN; printk(KERN_WARNING "Warning only 4GB will be used.\n"); printk(KERN_WARNING "Use a PAE enabled kernel.\n"); } #endif /* !CONFIG_X86_PAE */ #endif /* !CONFIG_HIGHMEM */ } else { if (highmem_pages == -1) highmem_pages = 0; #ifdef CONFIG_HIGHMEM if (highmem_pages >= max_pfn) { printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn)); highmem_pages = 0; } if (highmem_pages) { if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){ printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages)); highmem_pages = 0; } max_low_pfn -= highmem_pages; } #else if (highmem_pages) printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n"); #endif } return max_low_pfn; } /* * Free all available memory for boot time allocation. Used * as a callback function by efi_memory_walk() */ static int __init free_available_memory(unsigned long start, unsigned long end, void *arg) { /* check max_low_pfn */ if (start >= (max_low_pfn << PAGE_SHIFT)) return 0; if (end >= (max_low_pfn << PAGE_SHIFT)) end = max_low_pfn << PAGE_SHIFT; if (start < end) free_bootmem(start, end - start); return 0; } /* * Register fully available low RAM pages with the bootmem allocator. */ static void __init register_bootmem_low_pages(unsigned long max_low_pfn) { int i; if (efi_enabled) { efi_memmap_walk(free_available_memory, NULL); return; } for (i = 0; i < e820.nr_map; i++) { unsigned long curr_pfn, last_pfn, size; /* * Reserve usable low memory */ if (e820.map[i].type != E820_RAM) continue; /* * We are rounding up the start address of usable memory: */ curr_pfn = PFN_UP(e820.map[i].addr); if (curr_pfn >= max_low_pfn) continue; /* * ... and at the end of the usable range downwards: */ last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size); if (last_pfn > max_low_pfn) last_pfn = max_low_pfn; /* * .. finally, did all the rounding and playing * around just make the area go away? */ if (last_pfn <= curr_pfn) continue; size = last_pfn - curr_pfn; free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size)); } } /* * workaround for Dell systems that neglect to reserve EBDA */ static void __init reserve_ebda_region(void) { unsigned int addr; addr = get_bios_ebda(); if (addr) reserve_bootmem(addr, PAGE_SIZE); } #ifndef CONFIG_NEED_MULTIPLE_NODES void __init setup_bootmem_allocator(void); static unsigned long __init setup_memory(void) { /* * partially used pages are not usable - thus * we are rounding upwards: */ min_low_pfn = PFN_UP(init_pg_tables_end); find_max_pfn(); max_low_pfn = find_max_low_pfn(); #ifdef CONFIG_HIGHMEM highstart_pfn = highend_pfn = max_pfn; if (max_pfn > max_low_pfn) { highstart_pfn = max_low_pfn; } printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", pages_to_mb(highend_pfn - highstart_pfn)); num_physpages = highend_pfn; high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; #else num_physpages = max_low_pfn; high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; #endif #ifdef CONFIG_FLATMEM max_mapnr = num_physpages; #endif printk(KERN_NOTICE "%ldMB LOWMEM available.\n", pages_to_mb(max_low_pfn)); setup_bootmem_allocator(); return max_low_pfn; } void __init zone_sizes_init(void) { unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; unsigned int max_dma, low; max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; low = max_low_pfn; if (low < max_dma) zones_size[ZONE_DMA] = low; else { zones_size[ZONE_DMA] = max_dma; zones_size[ZONE_NORMAL] = low - max_dma; #ifdef CONFIG_HIGHMEM zones_size[ZONE_HIGHMEM] = highend_pfn - low; #endif } free_area_init(zones_size); } #else extern unsigned long __init setup_memory(void); extern void zone_sizes_init(void); #endif /* !CONFIG_NEED_MULTIPLE_NODES */ void __init setup_bootmem_allocator(void) { unsigned long bootmap_size; /* * Initialize the boot-time allocator (with low memory only): */ bootmap_size = init_bootmem(min_low_pfn, max_low_pfn); register_bootmem_low_pages(max_low_pfn); /* * Reserve the bootmem bitmap itself as well. We do this in two * steps (first step was init_bootmem()) because this catches * the (very unlikely) case of us accidentally initializing the * bootmem allocator with an invalid RAM area. */ reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) + bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START)); /* * reserve physical page 0 - it's a special BIOS page on many boxes, * enabling clean reboots, SMP operation, laptop functions. */ reserve_bootmem(0, PAGE_SIZE); /* reserve EBDA region, it's a 4K region */ reserve_ebda_region(); /* could be an AMD 768MPX chipset. Reserve a page before VGA to prevent PCI prefetch into it (errata #56). Usually the page is reserved anyways, unless you have no PS/2 mouse plugged in. */ if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 == 6) reserve_bootmem(0xa0000 - 4096, 4096); #ifdef CONFIG_SMP /* * But first pinch a few for the stack/trampoline stuff * FIXME: Don't need the extra page at 4K, but need to fix * trampoline before removing it. (see the GDT stuff) */ reserve_bootmem(PAGE_SIZE, PAGE_SIZE); #endif #ifdef CONFIG_ACPI_SLEEP /* * Reserve low memory region for sleep support. */ acpi_reserve_bootmem(); #endif #ifdef CONFIG_X86_FIND_SMP_CONFIG /* * Find and reserve possible boot-time SMP configuration: */ find_smp_config(); #endif #ifdef CONFIG_BLK_DEV_INITRD if (LOADER_TYPE && INITRD_START) { if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { reserve_bootmem(INITRD_START, INITRD_SIZE); initrd_start = INITRD_START ? INITRD_START + PAGE_OFFSET : 0; initrd_end = initrd_start+INITRD_SIZE; } else { printk(KERN_ERR "initrd extends beyond end of memory " "(0x%08lx > 0x%08lx)\ndisabling initrd\n", INITRD_START + INITRD_SIZE, max_low_pfn << PAGE_SHIFT); initrd_start = 0; } } #endif #ifdef CONFIG_KEXEC if (crashk_res.start != crashk_res.end) reserve_bootmem(crashk_res.start, crashk_res.end - crashk_res.start + 1); #endif } /* * The node 0 pgdat is initialized before all of these because * it's needed for bootmem. node>0 pgdats have their virtual * space allocated before the pagetables are in place to access * them, so they can't be cleared then. * * This should all compile down to nothing when NUMA is off. */ void __init remapped_pgdat_init(void) { int nid; for_each_online_node(nid) { if (nid != 0) memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); } } /* * Request address space for all standard RAM and ROM resources * and also for regions reported as reserved by the e820. */ static void __init legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource) { int i; probe_roms(); for (i = 0; i < e820.nr_map; i++) { struct resource *res; #ifndef CONFIG_RESOURCES_64BIT if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL) continue; #endif res = kzalloc(sizeof(struct resource), GFP_ATOMIC); switch (e820.map[i].type) { case E820_RAM: res->name = "System RAM"; break; case E820_ACPI: res->name = "ACPI Tables"; break; case E820_NVS: res->name = "ACPI Non-volatile Storage"; break; default: res->name = "reserved"; } res->start = e820.map[i].addr; res->end = res->start + e820.map[i].size - 1; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; if (request_resource(&iomem_resource, res)) { kfree(res); continue; } if (e820.map[i].type == E820_RAM) { /* * We don't know which RAM region contains kernel data, * so we try it repeatedly and let the resource manager * test it. */ request_resource(res, code_resource); request_resource(res, data_resource); #ifdef CONFIG_KEXEC request_resource(res, &crashk_res); #endif } } } /* * Request address space for all standard resources * * This is called just before pcibios_init(), which is also a * subsys_initcall, but is linked in later (in arch/i386/pci/common.c). */ static int __init request_standard_resources(void) { int i; printk("Setting up standard PCI resources\n"); if (efi_enabled) efi_initialize_iomem_resources(&code_resource, &data_resource); else legacy_init_iomem_resources(&code_resource, &data_resource); /* EFI systems may still have VGA */ request_resource(&iomem_resource, &video_ram_resource); /* request I/O space for devices used on all i[345]86 PCs */ for (i = 0; i < STANDARD_IO_RESOURCES; i++) request_resource(&ioport_resource, &standard_io_resources[i]); return 0; } subsys_initcall(request_standard_resources); static void __init register_memory(void) { unsigned long gapstart, gapsize, round; unsigned long long last; int i; /* * Search for the bigest gap in the low 32 bits of the e820 * memory space. */ last = 0x100000000ull; gapstart = 0x10000000; gapsize = 0x400000; i = e820.nr_map; while (--i >= 0) { unsigned long long start = e820.map[i].addr; unsigned long long end = start + e820.map[i].size; /* * Since "last" is at most 4GB, we know we'll * fit in 32 bits if this condition is true */ if (last > end) { unsigned long gap = last - end; if (gap > gapsize) { gapsize = gap; gapstart = end; } } if (start < last) last = start; } /* * See how much we want to round up: start off with * rounding to the next 1MB area. */ round = 0x100000; while ((gapsize >> 4) > round) round += round; /* Fun with two's complement */ pci_mem_start = (gapstart + round) & -round; printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n", pci_mem_start, gapstart, gapsize); } #ifdef CONFIG_MCA static void set_mca_bus(int x) { MCA_bus = x; } #else static void set_mca_bus(int x) { } #endif /* * Determine if we were loaded by an EFI loader. If so, then we have also been * passed the efi memmap, systab, etc., so we should use these data structures * for initialization. Note, the efi init code path is determined by the * global efi_enabled. This allows the same kernel image to be used on existing * systems (with a traditional BIOS) as well as on EFI systems. */ void __init setup_arch(char **cmdline_p) { unsigned long max_low_pfn; memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); pre_setup_arch_hook(); early_cpu_init(); /* * FIXME: This isn't an official loader_type right * now but does currently work with elilo. * If we were configured as an EFI kernel, check to make * sure that we were loaded correctly from elilo and that * the system table is valid. If not, then initialize normally. */ #ifdef CONFIG_EFI if ((LOADER_TYPE == 0x50) && EFI_SYSTAB) efi_enabled = 1; #endif ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); drive_info = DRIVE_INFO; screen_info = SCREEN_INFO; edid_info = EDID_INFO; apm_info.bios = APM_BIOS_INFO; ist_info = IST_INFO; saved_videomode = VIDEO_MODE; if( SYS_DESC_TABLE.length != 0 ) { set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2); machine_id = SYS_DESC_TABLE.table[0]; machine_submodel_id = SYS_DESC_TABLE.table[1]; BIOS_revision = SYS_DESC_TABLE.table[2]; } bootloader_type = LOADER_TYPE; #ifdef CONFIG_BLK_DEV_RAM rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); #endif ARCH_SETUP if (efi_enabled) efi_init(); else { printk(KERN_INFO "BIOS-provided physical RAM map:\n"); print_memory_map(machine_specific_memory_setup()); } copy_edd(); if (!MOUNT_ROOT_RDONLY) root_mountflags &= ~MS_RDONLY; init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = init_pg_tables_end + PAGE_OFFSET; code_resource.start = virt_to_phys(_text); code_resource.end = virt_to_phys(_etext)-1; data_resource.start = virt_to_phys(_etext); data_resource.end = virt_to_phys(_edata)-1; parse_early_param(); if (user_defined_memmap) { printk(KERN_INFO "user-defined physical RAM map:\n"); print_memory_map("user"); } strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; max_low_pfn = setup_memory(); /* * NOTE: before this point _nobody_ is allowed to allocate * any memory using the bootmem allocator. Although the * alloctor is now initialised only the first 8Mb of the kernel * virtual address space has been mapped. All allocations before * paging_init() has completed must use the alloc_bootmem_low_pages() * variant (which allocates DMA'able memory) and care must be taken * not to exceed the 8Mb limit. */ #ifdef CONFIG_SMP smp_alloc_memory(); /* AP processor realmode stacks in low memory*/ #endif paging_init(); remapped_pgdat_init(); sparse_init(); zone_sizes_init(); /* * NOTE: at this point the bootmem allocator is fully available. */ dmi_scan_machine(); #ifdef CONFIG_X86_GENERICARCH generic_apic_probe(); #endif if (efi_enabled) efi_map_memmap(); #ifdef CONFIG_ACPI /* * Parse the ACPI tables for possible boot-time SMP configuration. */ acpi_boot_table_init(); #endif #ifdef CONFIG_X86_IO_APIC check_acpi_pci(); /* Checks more than just ACPI actually */ #endif #ifdef CONFIG_ACPI acpi_boot_init(); #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC) if (def_to_bigsmp) printk(KERN_WARNING "More than 8 CPUs detected and " "CONFIG_X86_PC cannot handle it.\nUse " "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n"); #endif #endif #ifdef CONFIG_X86_LOCAL_APIC if (smp_found_config) get_smp_config(); #endif register_memory(); #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif tsc_init(); } static __init int add_pcspkr(void) { struct platform_device *pd; int ret; pd = platform_device_alloc("pcspkr", -1); if (!pd) return -ENOMEM; ret = platform_device_add(pd); if (ret) platform_device_put(pd); return ret; } device_initcall(add_pcspkr); /* * Local Variables: * mode:c * c-file-style:"k&r" * c-basic-offset:8 * End: */