/* * Intel SMP support routines. * * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com> * * This code is released under the GNU General Public License version 2 or * later. */ #include <linux/init.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/smp_lock.h> #include <linux/kernel_stat.h> #include <linux/mc146818rtc.h> #include <linux/cache.h> #include <linux/interrupt.h> #include <linux/cpu.h> #include <linux/module.h> #include <asm/mtrr.h> #include <asm/tlbflush.h> #include <mach_apic.h> /* * Some notes on x86 processor bugs affecting SMP operation: * * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. * The Linux implications for SMP are handled as follows: * * Pentium III / [Xeon] * None of the E1AP-E3AP errata are visible to the user. * * E1AP. see PII A1AP * E2AP. see PII A2AP * E3AP. see PII A3AP * * Pentium II / [Xeon] * None of the A1AP-A3AP errata are visible to the user. * * A1AP. see PPro 1AP * A2AP. see PPro 2AP * A3AP. see PPro 7AP * * Pentium Pro * None of 1AP-9AP errata are visible to the normal user, * except occasional delivery of 'spurious interrupt' as trap #15. * This is very rare and a non-problem. * * 1AP. Linux maps APIC as non-cacheable * 2AP. worked around in hardware * 3AP. fixed in C0 and above steppings microcode update. * Linux does not use excessive STARTUP_IPIs. * 4AP. worked around in hardware * 5AP. symmetric IO mode (normal Linux operation) not affected. * 'noapic' mode has vector 0xf filled out properly. * 6AP. 'noapic' mode might be affected - fixed in later steppings * 7AP. We do not assume writes to the LVT deassering IRQs * 8AP. We do not enable low power mode (deep sleep) during MP bootup * 9AP. We do not use mixed mode * * Pentium * There is a marginal case where REP MOVS on 100MHz SMP * machines with B stepping processors can fail. XXX should provide * an L1cache=Writethrough or L1cache=off option. * * B stepping CPUs may hang. There are hardware work arounds * for this. We warn about it in case your board doesn't have the work * arounds. Basically thats so I can tell anyone with a B stepping * CPU and SMP problems "tough". * * Specific items [From Pentium Processor Specification Update] * * 1AP. Linux doesn't use remote read * 2AP. Linux doesn't trust APIC errors * 3AP. We work around this * 4AP. Linux never generated 3 interrupts of the same priority * to cause a lost local interrupt. * 5AP. Remote read is never used * 6AP. not affected - worked around in hardware * 7AP. not affected - worked around in hardware * 8AP. worked around in hardware - we get explicit CS errors if not * 9AP. only 'noapic' mode affected. Might generate spurious * interrupts, we log only the first one and count the * rest silently. * 10AP. not affected - worked around in hardware * 11AP. Linux reads the APIC between writes to avoid this, as per * the documentation. Make sure you preserve this as it affects * the C stepping chips too. * 12AP. not affected - worked around in hardware * 13AP. not affected - worked around in hardware * 14AP. we always deassert INIT during bootup * 15AP. not affected - worked around in hardware * 16AP. not affected - worked around in hardware * 17AP. not affected - worked around in hardware * 18AP. not affected - worked around in hardware * 19AP. not affected - worked around in BIOS * * If this sounds worrying believe me these bugs are either ___RARE___, * or are signal timing bugs worked around in hardware and there's * about nothing of note with C stepping upwards. */ DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, }; /* * the following functions deal with sending IPIs between CPUs. * * We use 'broadcast', CPU->CPU IPIs and self-IPIs too. */ static inline int __prepare_ICR (unsigned int shortcut, int vector) { return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL; } static inline int __prepare_ICR2 (unsigned int mask) { return SET_APIC_DEST_FIELD(mask); } void __send_IPI_shortcut(unsigned int shortcut, int vector) { /* * Subtle. In the case of the 'never do double writes' workaround * we have to lock out interrupts to be safe. As we don't care * of the value read we use an atomic rmw access to avoid costly * cli/sti. Otherwise we use an even cheaper single atomic write * to the APIC. */ unsigned int cfg; /* * Wait for idle. */ apic_wait_icr_idle(); /* * No need to touch the target chip field */ cfg = __prepare_ICR(shortcut, vector); /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write_around(APIC_ICR, cfg); } void fastcall send_IPI_self(int vector) { __send_IPI_shortcut(APIC_DEST_SELF, vector); } /* * This is only used on smaller machines. */ void send_IPI_mask_bitmask(cpumask_t cpumask, int vector) { unsigned long mask = cpus_addr(cpumask)[0]; unsigned long cfg; unsigned long flags; local_irq_save(flags); WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]); /* * Wait for idle. */ apic_wait_icr_idle(); /* * prepare target chip field */ cfg = __prepare_ICR2(mask); apic_write_around(APIC_ICR2, cfg); /* * program the ICR */ cfg = __prepare_ICR(0, vector); /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write_around(APIC_ICR, cfg); local_irq_restore(flags); } void send_IPI_mask_sequence(cpumask_t mask, int vector) { unsigned long cfg, flags; unsigned int query_cpu; /* * Hack. The clustered APIC addressing mode doesn't allow us to send * to an arbitrary mask, so I do a unicasts to each CPU instead. This * should be modified to do 1 message per cluster ID - mbligh */ local_irq_save(flags); for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) { if (cpu_isset(query_cpu, mask)) { /* * Wait for idle. */ apic_wait_icr_idle(); /* * prepare target chip field */ cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu)); apic_write_around(APIC_ICR2, cfg); /* * program the ICR */ cfg = __prepare_ICR(0, vector); /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write_around(APIC_ICR, cfg); } } local_irq_restore(flags); } #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */ /* * Smarter SMP flushing macros. * c/o Linus Torvalds. * * These mean you can really definitely utterly forget about * writing to user space from interrupts. (Its not allowed anyway). * * Optimizations Manfred Spraul <manfred@colorfullife.com> */ static cpumask_t flush_cpumask; static struct mm_struct * flush_mm; static unsigned long flush_va; static DEFINE_SPINLOCK(tlbstate_lock); #define FLUSH_ALL 0xffffffff /* * We cannot call mmdrop() because we are in interrupt context, * instead update mm->cpu_vm_mask. * * We need to reload %cr3 since the page tables may be going * away from under us.. */ static inline void leave_mm (unsigned long cpu) { if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) BUG(); cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); load_cr3(swapper_pg_dir); } /* * * The flush IPI assumes that a thread switch happens in this order: * [cpu0: the cpu that switches] * 1) switch_mm() either 1a) or 1b) * 1a) thread switch to a different mm * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); * Stop ipi delivery for the old mm. This is not synchronized with * the other cpus, but smp_invalidate_interrupt ignore flush ipis * for the wrong mm, and in the worst case we perform a superflous * tlb flush. * 1a2) set cpu_tlbstate to TLBSTATE_OK * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 * was in lazy tlb mode. * 1a3) update cpu_tlbstate[].active_mm * Now cpu0 accepts tlb flushes for the new mm. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); * Now the other cpus will send tlb flush ipis. * 1a4) change cr3. * 1b) thread switch without mm change * cpu_tlbstate[].active_mm is correct, cpu0 already handles * flush ipis. * 1b1) set cpu_tlbstate to TLBSTATE_OK * 1b2) test_and_set the cpu bit in cpu_vm_mask. * Atomically set the bit [other cpus will start sending flush ipis], * and test the bit. * 1b3) if the bit was 0: leave_mm was called, flush the tlb. * 2) switch %%esp, ie current * * The interrupt must handle 2 special cases: * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. * - the cpu performs speculative tlb reads, i.e. even if the cpu only * runs in kernel space, the cpu could load tlb entries for user space * pages. * * The good news is that cpu_tlbstate is local to each cpu, no * write/read ordering problems. */ /* * TLB flush IPI: * * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. * 2) Leave the mm if we are in the lazy tlb mode. */ fastcall void smp_invalidate_interrupt(struct pt_regs *regs) { unsigned long cpu; cpu = get_cpu(); if (!cpu_isset(cpu, flush_cpumask)) goto out; /* * This was a BUG() but until someone can quote me the * line from the intel manual that guarantees an IPI to * multiple CPUs is retried _only_ on the erroring CPUs * its staying as a return * * BUG(); */ if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { if (flush_va == FLUSH_ALL) local_flush_tlb(); else __flush_tlb_one(flush_va); } else leave_mm(cpu); } ack_APIC_irq(); smp_mb__before_clear_bit(); cpu_clear(cpu, flush_cpumask); smp_mb__after_clear_bit(); out: put_cpu_no_resched(); } static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm, unsigned long va) { /* * A couple of (to be removed) sanity checks: * * - current CPU must not be in mask * - mask must exist :) */ BUG_ON(cpus_empty(cpumask)); BUG_ON(cpu_isset(smp_processor_id(), cpumask)); BUG_ON(!mm); /* If a CPU which we ran on has gone down, OK. */ cpus_and(cpumask, cpumask, cpu_online_map); if (cpus_empty(cpumask)) return; /* * i'm not happy about this global shared spinlock in the * MM hot path, but we'll see how contended it is. * Temporarily this turns IRQs off, so that lockups are * detected by the NMI watchdog. */ spin_lock(&tlbstate_lock); flush_mm = mm; flush_va = va; #if NR_CPUS <= BITS_PER_LONG atomic_set_mask(cpumask, &flush_cpumask); #else { int k; unsigned long *flush_mask = (unsigned long *)&flush_cpumask; unsigned long *cpu_mask = (unsigned long *)&cpumask; for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k) atomic_set_mask(cpu_mask[k], &flush_mask[k]); } #endif /* * We have to send the IPI only to * CPUs affected. */ send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR); while (!cpus_empty(flush_cpumask)) /* nothing. lockup detection does not belong here */ mb(); flush_mm = NULL; flush_va = 0; spin_unlock(&tlbstate_lock); } void flush_tlb_current_task(void) { struct mm_struct *mm = current->mm; cpumask_t cpu_mask; preempt_disable(); cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); local_flush_tlb(); if (!cpus_empty(cpu_mask)) flush_tlb_others(cpu_mask, mm, FLUSH_ALL); preempt_enable(); } void flush_tlb_mm (struct mm_struct * mm) { cpumask_t cpu_mask; preempt_disable(); cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (current->active_mm == mm) { if (current->mm) local_flush_tlb(); else leave_mm(smp_processor_id()); } if (!cpus_empty(cpu_mask)) flush_tlb_others(cpu_mask, mm, FLUSH_ALL); preempt_enable(); } void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) { struct mm_struct *mm = vma->vm_mm; cpumask_t cpu_mask; preempt_disable(); cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (current->active_mm == mm) { if(current->mm) __flush_tlb_one(va); else leave_mm(smp_processor_id()); } if (!cpus_empty(cpu_mask)) flush_tlb_others(cpu_mask, mm, va); preempt_enable(); } EXPORT_SYMBOL(flush_tlb_page); static void do_flush_tlb_all(void* info) { unsigned long cpu = smp_processor_id(); __flush_tlb_all(); if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) leave_mm(cpu); } void flush_tlb_all(void) { on_each_cpu(do_flush_tlb_all, NULL, 1, 1); } /* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { WARN_ON(cpu_is_offline(cpu)); send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR); } /* * Structure and data for smp_call_function(). This is designed to minimise * static memory requirements. It also looks cleaner. */ static DEFINE_SPINLOCK(call_lock); struct call_data_struct { void (*func) (void *info); void *info; atomic_t started; atomic_t finished; int wait; }; void lock_ipi_call_lock(void) { spin_lock_irq(&call_lock); } void unlock_ipi_call_lock(void) { spin_unlock_irq(&call_lock); } static struct call_data_struct * call_data; /* * this function sends a 'generic call function' IPI to all other CPUs * in the system. */ int smp_call_function (void (*func) (void *info), void *info, int nonatomic, int wait) /* * [SUMMARY] Run a function on all other CPUs. * <func> The function to run. This must be fast and non-blocking. * <info> An arbitrary pointer to pass to the function. * <nonatomic> currently unused. * <wait> If true, wait (atomically) until function has completed on other CPUs. * [RETURNS] 0 on success, else a negative status code. Does not return until * remote CPUs are nearly ready to execute <<func>> or are or have executed. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ { struct call_data_struct data; int cpus; /* Holding any lock stops cpus from going down. */ spin_lock(&call_lock); cpus = num_online_cpus() - 1; if (!cpus) { spin_unlock(&call_lock); return 0; } /* Can deadlock when called with interrupts disabled */ WARN_ON(irqs_disabled()); data.func = func; data.info = info; atomic_set(&data.started, 0); data.wait = wait; if (wait) atomic_set(&data.finished, 0); call_data = &data; mb(); /* Send a message to all other CPUs and wait for them to respond */ send_IPI_allbutself(CALL_FUNCTION_VECTOR); /* Wait for response */ while (atomic_read(&data.started) != cpus) cpu_relax(); if (wait) while (atomic_read(&data.finished) != cpus) cpu_relax(); spin_unlock(&call_lock); return 0; } EXPORT_SYMBOL(smp_call_function); static void stop_this_cpu (void * dummy) { /* * Remove this CPU: */ cpu_clear(smp_processor_id(), cpu_online_map); local_irq_disable(); disable_local_APIC(); if (cpu_data[smp_processor_id()].hlt_works_ok) for(;;) halt(); for (;;); } /* * this function calls the 'stop' function on all other CPUs in the system. */ void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 1, 0); local_irq_disable(); disable_local_APIC(); local_irq_enable(); } /* * Reschedule call back. Nothing to do, * all the work is done automatically when * we return from the interrupt. */ fastcall void smp_reschedule_interrupt(struct pt_regs *regs) { ack_APIC_irq(); } fastcall void smp_call_function_interrupt(struct pt_regs *regs) { void (*func) (void *info) = call_data->func; void *info = call_data->info; int wait = call_data->wait; ack_APIC_irq(); /* * Notify initiating CPU that I've grabbed the data and am * about to execute the function */ mb(); atomic_inc(&call_data->started); /* * At this point the info structure may be out of scope unless wait==1 */ irq_enter(); (*func)(info); irq_exit(); if (wait) { mb(); atomic_inc(&call_data->finished); } }