// // assembly portion of the IA64 MCA handling // // Mods by cfleck to integrate into kernel build // 00/03/15 davidm Added various stop bits to get a clean compile // // 00/03/29 cfleck Added code to save INIT handoff state in pt_regs format, switch to temp // kstack, switch modes, jump to C INIT handler // // 02/01/04 J.Hall <jenna.s.hall@intel.com> // Before entering virtual mode code: // 1. Check for TLB CPU error // 2. Restore current thread pointer to kr6 // 3. Move stack ptr 16 bytes to conform to C calling convention // // 04/11/12 Russ Anderson <rja@sgi.com> // Added per cpu MCA/INIT stack save areas. // // 12/08/05 Keith Owens <kaos@sgi.com> // Use per cpu MCA/INIT stacks for all data. // #include <linux/threads.h> #include <asm/asmmacro.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/mca_asm.h> #include <asm/mca.h> #include "entry.h" #define GET_IA64_MCA_DATA(reg) \ GET_THIS_PADDR(reg, ia64_mca_data) \ ;; \ ld8 reg=[reg] .global ia64_do_tlb_purge .global ia64_os_mca_dispatch .global ia64_os_init_dispatch_monarch .global ia64_os_init_dispatch_slave .text .align 16 //StartMain//////////////////////////////////////////////////////////////////// /* * Just the TLB purge part is moved to a separate function * so we can re-use the code for cpu hotplug code as well * Caller should now setup b1, so we can branch once the * tlb flush is complete. */ ia64_do_tlb_purge: #define O(member) IA64_CPUINFO_##member##_OFFSET GET_THIS_PADDR(r2, cpu_info) // load phys addr of cpu_info into r2 ;; addl r17=O(PTCE_STRIDE),r2 addl r2=O(PTCE_BASE),r2 ;; ld8 r18=[r2],(O(PTCE_COUNT)-O(PTCE_BASE));; // r18=ptce_base ld4 r19=[r2],4 // r19=ptce_count[0] ld4 r21=[r17],4 // r21=ptce_stride[0] ;; ld4 r20=[r2] // r20=ptce_count[1] ld4 r22=[r17] // r22=ptce_stride[1] mov r24=0 ;; adds r20=-1,r20 ;; #undef O 2: cmp.ltu p6,p7=r24,r19 (p7) br.cond.dpnt.few 4f mov ar.lc=r20 3: ptc.e r18 ;; add r18=r22,r18 br.cloop.sptk.few 3b ;; add r18=r21,r18 add r24=1,r24 ;; br.sptk.few 2b 4: srlz.i // srlz.i implies srlz.d ;; // Now purge addresses formerly mapped by TR registers // 1. Purge ITR&DTR for kernel. movl r16=KERNEL_START mov r18=KERNEL_TR_PAGE_SHIFT<<2 ;; ptr.i r16, r18 ptr.d r16, r18 ;; srlz.i ;; srlz.d ;; // 2. Purge DTR for PERCPU data. movl r16=PERCPU_ADDR mov r18=PERCPU_PAGE_SHIFT<<2 ;; ptr.d r16,r18 ;; srlz.d ;; // 3. Purge ITR for PAL code. GET_THIS_PADDR(r2, ia64_mca_pal_base) ;; ld8 r16=[r2] mov r18=IA64_GRANULE_SHIFT<<2 ;; ptr.i r16,r18 ;; srlz.i ;; // 4. Purge DTR for stack. mov r16=IA64_KR(CURRENT_STACK) ;; shl r16=r16,IA64_GRANULE_SHIFT movl r19=PAGE_OFFSET ;; add r16=r19,r16 mov r18=IA64_GRANULE_SHIFT<<2 ;; ptr.d r16,r18 ;; srlz.i ;; // Now branch away to caller. br.sptk.many b1 ;; //EndMain////////////////////////////////////////////////////////////////////// //StartMain//////////////////////////////////////////////////////////////////// ia64_os_mca_dispatch: // Serialize all MCA processing mov r3=1;; LOAD_PHYSICAL(p0,r2,ia64_mca_serialize);; ia64_os_mca_spin: xchg4 r4=[r2],r3;; cmp.ne p6,p0=r4,r0 (p6) br ia64_os_mca_spin mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack LOAD_PHYSICAL(p0,r2,1f) // return address mov r19=1 // All MCA events are treated as monarch (for now) br.sptk ia64_state_save // save the state that is not in minstate 1: GET_IA64_MCA_DATA(r2) // Using MCA stack, struct ia64_sal_os_state, variable proc_state_param ;; add r3=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_SOS_OFFSET+SOS(PROC_STATE_PARAM), r2 ;; ld8 r18=[r3] // Get processor state parameter on existing PALE_CHECK. ;; tbit.nz p6,p7=r18,60 (p7) br.spnt done_tlb_purge_and_reload // The following code purges TC and TR entries. Then reload all TC entries. // Purge percpu data TC entries. begin_tlb_purge_and_reload: movl r18=ia64_reload_tr;; LOAD_PHYSICAL(p0,r18,ia64_reload_tr);; mov b1=r18;; br.sptk.many ia64_do_tlb_purge;; ia64_reload_tr: // Finally reload the TR registers. // 1. Reload DTR/ITR registers for kernel. mov r18=KERNEL_TR_PAGE_SHIFT<<2 movl r17=KERNEL_START ;; mov cr.itir=r18 mov cr.ifa=r17 mov r16=IA64_TR_KERNEL mov r19=ip movl r18=PAGE_KERNEL ;; dep r17=0,r19,0, KERNEL_TR_PAGE_SHIFT ;; or r18=r17,r18 ;; itr.i itr[r16]=r18 ;; itr.d dtr[r16]=r18 ;; srlz.i srlz.d ;; // 2. Reload DTR register for PERCPU data. GET_THIS_PADDR(r2, ia64_mca_per_cpu_pte) ;; movl r16=PERCPU_ADDR // vaddr movl r18=PERCPU_PAGE_SHIFT<<2 ;; mov cr.itir=r18 mov cr.ifa=r16 ;; ld8 r18=[r2] // load per-CPU PTE mov r16=IA64_TR_PERCPU_DATA; ;; itr.d dtr[r16]=r18 ;; srlz.d ;; // 3. Reload ITR for PAL code. GET_THIS_PADDR(r2, ia64_mca_pal_pte) ;; ld8 r18=[r2] // load PAL PTE ;; GET_THIS_PADDR(r2, ia64_mca_pal_base) ;; ld8 r16=[r2] // load PAL vaddr mov r19=IA64_GRANULE_SHIFT<<2 ;; mov cr.itir=r19 mov cr.ifa=r16 mov r20=IA64_TR_PALCODE ;; itr.i itr[r20]=r18 ;; srlz.i ;; // 4. Reload DTR for stack. mov r16=IA64_KR(CURRENT_STACK) ;; shl r16=r16,IA64_GRANULE_SHIFT movl r19=PAGE_OFFSET ;; add r18=r19,r16 movl r20=PAGE_KERNEL ;; add r16=r20,r16 mov r19=IA64_GRANULE_SHIFT<<2 ;; mov cr.itir=r19 mov cr.ifa=r18 mov r20=IA64_TR_CURRENT_STACK ;; itr.d dtr[r20]=r16 ;; srlz.d done_tlb_purge_and_reload: // switch to per cpu MCA stack mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_new_stack 1: // everything saved, now we can set the kernel registers mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_set_kernel_registers 1: // This must be done in physical mode GET_IA64_MCA_DATA(r2) ;; mov r7=r2 // Enter virtual mode from physical mode VIRTUAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_begin, r4) // This code returns to SAL via SOS r2, in general SAL has no unwind // data. To get a clean termination when backtracing the C MCA/INIT // handler, set a dummy return address of 0 in this routine. That // requires that ia64_os_mca_virtual_begin be a global function. ENTRY(ia64_os_mca_virtual_begin) .prologue .save rp,r0 .body mov ar.rsc=3 // set eager mode for C handler mov r2=r7 // see GET_IA64_MCA_DATA above ;; // Call virtual mode handler alloc r14=ar.pfs,0,0,3,0 ;; DATA_PA_TO_VA(r2,r7) ;; add out0=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_PT_REGS_OFFSET, r2 add out1=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_SWITCH_STACK_OFFSET, r2 add out2=IA64_MCA_CPU_MCA_STACK_OFFSET+MCA_SOS_OFFSET, r2 br.call.sptk.many b0=ia64_mca_handler // Revert back to physical mode before going back to SAL PHYSICAL_MODE_ENTER(r2, r3, ia64_os_mca_virtual_end, r4) ia64_os_mca_virtual_end: END(ia64_os_mca_virtual_begin) // switch back to previous stack alloc r14=ar.pfs,0,0,0,0 // remove the MCA handler frame mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_old_stack 1: mov r3=IA64_MCA_CPU_MCA_STACK_OFFSET // use the MCA stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_state_restore // restore the SAL state 1: mov b0=r12 // SAL_CHECK return address // release lock LOAD_PHYSICAL(p0,r3,ia64_mca_serialize);; st4.rel [r3]=r0 br b0 //EndMain////////////////////////////////////////////////////////////////////// //StartMain//////////////////////////////////////////////////////////////////// // // SAL to OS entry point for INIT on all processors. This has been defined for // registration purposes with SAL as a part of ia64_mca_init. Monarch and // slave INIT have identical processing, except for the value of the // sos->monarch flag in r19. // ia64_os_init_dispatch_monarch: mov r19=1 // Bow, bow, ye lower middle classes! br.sptk ia64_os_init_dispatch ia64_os_init_dispatch_slave: mov r19=0 // <igor>yeth, mathter</igor> ia64_os_init_dispatch: mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_state_save // save the state that is not in minstate 1: // switch to per cpu INIT stack mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_new_stack 1: // everything saved, now we can set the kernel registers mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_set_kernel_registers 1: // This must be done in physical mode GET_IA64_MCA_DATA(r2) ;; mov r7=r2 // Enter virtual mode from physical mode VIRTUAL_MODE_ENTER(r2, r3, ia64_os_init_virtual_begin, r4) // This code returns to SAL via SOS r2, in general SAL has no unwind // data. To get a clean termination when backtracing the C MCA/INIT // handler, set a dummy return address of 0 in this routine. That // requires that ia64_os_init_virtual_begin be a global function. ENTRY(ia64_os_init_virtual_begin) .prologue .save rp,r0 .body mov ar.rsc=3 // set eager mode for C handler mov r2=r7 // see GET_IA64_MCA_DATA above ;; // Call virtual mode handler alloc r14=ar.pfs,0,0,3,0 ;; DATA_PA_TO_VA(r2,r7) ;; add out0=IA64_MCA_CPU_INIT_STACK_OFFSET+MCA_PT_REGS_OFFSET, r2 add out1=IA64_MCA_CPU_INIT_STACK_OFFSET+MCA_SWITCH_STACK_OFFSET, r2 add out2=IA64_MCA_CPU_INIT_STACK_OFFSET+MCA_SOS_OFFSET, r2 br.call.sptk.many b0=ia64_init_handler // Revert back to physical mode before going back to SAL PHYSICAL_MODE_ENTER(r2, r3, ia64_os_init_virtual_end, r4) ia64_os_init_virtual_end: END(ia64_os_init_virtual_begin) mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_state_restore // restore the SAL state 1: // switch back to previous stack alloc r14=ar.pfs,0,0,0,0 // remove the INIT handler frame mov r3=IA64_MCA_CPU_INIT_STACK_OFFSET // use the INIT stack LOAD_PHYSICAL(p0,r2,1f) // return address br.sptk ia64_old_stack 1: mov b0=r12 // SAL_CHECK return address br b0 //EndMain////////////////////////////////////////////////////////////////////// // common defines for the stubs #define ms r4 #define regs r5 #define temp1 r2 /* careful, it overlaps with input registers */ #define temp2 r3 /* careful, it overlaps with input registers */ #define temp3 r7 #define temp4 r14 //++ // Name: // ia64_state_save() // // Stub Description: // // Save the state that is not in minstate. This is sensitive to the layout of // struct ia64_sal_os_state in mca.h. // // r2 contains the return address, r3 contains either // IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET. // // The OS to SAL section of struct ia64_sal_os_state is set to a default // value of cold boot (MCA) or warm boot (INIT) and return to the same // context. ia64_sal_os_state is also used to hold some registers that // need to be saved and restored across the stack switches. // // Most input registers to this stub come from PAL/SAL // r1 os gp, physical // r8 pal_proc entry point // r9 sal_proc entry point // r10 sal gp // r11 MCA - rendevzous state, INIT - reason code // r12 sal return address // r17 pal min_state // r18 processor state parameter // r19 monarch flag, set by the caller of this routine // // In addition to the SAL to OS state, this routine saves all the // registers that appear in struct pt_regs and struct switch_stack, // excluding those that are already in the PAL minstate area. This // results in a partial pt_regs and switch_stack, the C code copies the // remaining registers from PAL minstate to pt_regs and switch_stack. The // resulting structures contain all the state of the original process when // MCA/INIT occurred. // //-- ia64_state_save: add regs=MCA_SOS_OFFSET, r3 add ms=MCA_SOS_OFFSET+8, r3 mov b0=r2 // save return address cmp.eq p1,p2=IA64_MCA_CPU_MCA_STACK_OFFSET, r3 ;; GET_IA64_MCA_DATA(temp2) ;; add temp1=temp2, regs // struct ia64_sal_os_state on MCA or INIT stack add temp2=temp2, ms // struct ia64_sal_os_state+8 on MCA or INIT stack ;; mov regs=temp1 // save the start of sos st8 [temp1]=r1,16 // os_gp st8 [temp2]=r8,16 // pal_proc ;; st8 [temp1]=r9,16 // sal_proc st8 [temp2]=r11,16 // rv_rc mov r11=cr.iipa ;; st8 [temp1]=r18 // proc_state_param st8 [temp2]=r19 // monarch mov r6=IA64_KR(CURRENT) add temp1=SOS(SAL_RA), regs add temp2=SOS(SAL_GP), regs ;; st8 [temp1]=r12,16 // sal_ra st8 [temp2]=r10,16 // sal_gp mov r12=cr.isr ;; st8 [temp1]=r17,16 // pal_min_state st8 [temp2]=r6,16 // prev_IA64_KR_CURRENT mov r6=IA64_KR(CURRENT_STACK) ;; st8 [temp1]=r6,16 // prev_IA64_KR_CURRENT_STACK st8 [temp2]=r0,16 // prev_task, starts off as NULL mov r6=cr.ifa ;; st8 [temp1]=r12,16 // cr.isr st8 [temp2]=r6,16 // cr.ifa mov r12=cr.itir ;; st8 [temp1]=r12,16 // cr.itir st8 [temp2]=r11,16 // cr.iipa mov r12=cr.iim ;; st8 [temp1]=r12 // cr.iim (p1) mov r12=IA64_MCA_COLD_BOOT (p2) mov r12=IA64_INIT_WARM_BOOT mov r6=cr.iha add temp1=SOS(OS_STATUS), regs ;; st8 [temp2]=r6 // cr.iha add temp2=SOS(CONTEXT), regs st8 [temp1]=r12 // os_status, default is cold boot mov r6=IA64_MCA_SAME_CONTEXT ;; st8 [temp2]=r6 // context, default is same context // Save the pt_regs data that is not in minstate. The previous code // left regs at sos. add regs=MCA_PT_REGS_OFFSET-MCA_SOS_OFFSET, regs ;; add temp1=PT(B6), regs mov temp3=b6 mov temp4=b7 add temp2=PT(B7), regs ;; st8 [temp1]=temp3,PT(AR_CSD)-PT(B6) // save b6 st8 [temp2]=temp4,PT(AR_SSD)-PT(B7) // save b7 mov temp3=ar.csd mov temp4=ar.ssd cover // must be last in group ;; st8 [temp1]=temp3,PT(AR_UNAT)-PT(AR_CSD) // save ar.csd st8 [temp2]=temp4,PT(AR_PFS)-PT(AR_SSD) // save ar.ssd mov temp3=ar.unat mov temp4=ar.pfs ;; st8 [temp1]=temp3,PT(AR_RNAT)-PT(AR_UNAT) // save ar.unat st8 [temp2]=temp4,PT(AR_BSPSTORE)-PT(AR_PFS) // save ar.pfs mov temp3=ar.rnat mov temp4=ar.bspstore ;; st8 [temp1]=temp3,PT(LOADRS)-PT(AR_RNAT) // save ar.rnat st8 [temp2]=temp4,PT(AR_FPSR)-PT(AR_BSPSTORE) // save ar.bspstore mov temp3=ar.bsp ;; sub temp3=temp3, temp4 // ar.bsp - ar.bspstore mov temp4=ar.fpsr ;; shl temp3=temp3,16 // compute ar.rsc to be used for "loadrs" ;; st8 [temp1]=temp3,PT(AR_CCV)-PT(LOADRS) // save loadrs st8 [temp2]=temp4,PT(F6)-PT(AR_FPSR) // save ar.fpsr mov temp3=ar.ccv ;; st8 [temp1]=temp3,PT(F7)-PT(AR_CCV) // save ar.ccv stf.spill [temp2]=f6,PT(F8)-PT(F6) ;; stf.spill [temp1]=f7,PT(F9)-PT(F7) stf.spill [temp2]=f8,PT(F10)-PT(F8) ;; stf.spill [temp1]=f9,PT(F11)-PT(F9) stf.spill [temp2]=f10 ;; stf.spill [temp1]=f11 // Save the switch_stack data that is not in minstate nor pt_regs. The // previous code left regs at pt_regs. add regs=MCA_SWITCH_STACK_OFFSET-MCA_PT_REGS_OFFSET, regs ;; add temp1=SW(F2), regs add temp2=SW(F3), regs ;; stf.spill [temp1]=f2,32 stf.spill [temp2]=f3,32 ;; stf.spill [temp1]=f4,32 stf.spill [temp2]=f5,32 ;; stf.spill [temp1]=f12,32 stf.spill [temp2]=f13,32 ;; stf.spill [temp1]=f14,32 stf.spill [temp2]=f15,32 ;; stf.spill [temp1]=f16,32 stf.spill [temp2]=f17,32 ;; stf.spill [temp1]=f18,32 stf.spill [temp2]=f19,32 ;; stf.spill [temp1]=f20,32 stf.spill [temp2]=f21,32 ;; stf.spill [temp1]=f22,32 stf.spill [temp2]=f23,32 ;; stf.spill [temp1]=f24,32 stf.spill [temp2]=f25,32 ;; stf.spill [temp1]=f26,32 stf.spill [temp2]=f27,32 ;; stf.spill [temp1]=f28,32 stf.spill [temp2]=f29,32 ;; stf.spill [temp1]=f30,SW(B2)-SW(F30) stf.spill [temp2]=f31,SW(B3)-SW(F31) mov temp3=b2 mov temp4=b3 ;; st8 [temp1]=temp3,16 // save b2 st8 [temp2]=temp4,16 // save b3 mov temp3=b4 mov temp4=b5 ;; st8 [temp1]=temp3,SW(AR_LC)-SW(B4) // save b4 st8 [temp2]=temp4 // save b5 mov temp3=ar.lc ;; st8 [temp1]=temp3 // save ar.lc // FIXME: Some proms are incorrectly accessing the minstate area as // cached data. The C code uses region 6, uncached virtual. Ensure // that there is no cache data lying around for the first 1K of the // minstate area. // Remove this code in September 2006, that gives platforms a year to // fix their proms and get their customers updated. add r1=32*1,r17 add r2=32*2,r17 add r3=32*3,r17 add r4=32*4,r17 add r5=32*5,r17 add r6=32*6,r17 add r7=32*7,r17 ;; fc r17 fc r1 fc r2 fc r3 fc r4 fc r5 fc r6 fc r7 add r17=32*8,r17 add r1=32*8,r1 add r2=32*8,r2 add r3=32*8,r3 add r4=32*8,r4 add r5=32*8,r5 add r6=32*8,r6 add r7=32*8,r7 ;; fc r17 fc r1 fc r2 fc r3 fc r4 fc r5 fc r6 fc r7 add r17=32*8,r17 add r1=32*8,r1 add r2=32*8,r2 add r3=32*8,r3 add r4=32*8,r4 add r5=32*8,r5 add r6=32*8,r6 add r7=32*8,r7 ;; fc r17 fc r1 fc r2 fc r3 fc r4 fc r5 fc r6 fc r7 add r17=32*8,r17 add r1=32*8,r1 add r2=32*8,r2 add r3=32*8,r3 add r4=32*8,r4 add r5=32*8,r5 add r6=32*8,r6 add r7=32*8,r7 ;; fc r17 fc r1 fc r2 fc r3 fc r4 fc r5 fc r6 fc r7 br.sptk b0 //EndStub////////////////////////////////////////////////////////////////////// //++ // Name: // ia64_state_restore() // // Stub Description: // // Restore the SAL/OS state. This is sensitive to the layout of struct // ia64_sal_os_state in mca.h. // // r2 contains the return address, r3 contains either // IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET. // // In addition to the SAL to OS state, this routine restores all the // registers that appear in struct pt_regs and struct switch_stack, // excluding those in the PAL minstate area. // //-- ia64_state_restore: // Restore the switch_stack data that is not in minstate nor pt_regs. add regs=MCA_SWITCH_STACK_OFFSET, r3 mov b0=r2 // save return address ;; GET_IA64_MCA_DATA(temp2) ;; add regs=temp2, regs ;; add temp1=SW(F2), regs add temp2=SW(F3), regs ;; ldf.fill f2=[temp1],32 ldf.fill f3=[temp2],32 ;; ldf.fill f4=[temp1],32 ldf.fill f5=[temp2],32 ;; ldf.fill f12=[temp1],32 ldf.fill f13=[temp2],32 ;; ldf.fill f14=[temp1],32 ldf.fill f15=[temp2],32 ;; ldf.fill f16=[temp1],32 ldf.fill f17=[temp2],32 ;; ldf.fill f18=[temp1],32 ldf.fill f19=[temp2],32 ;; ldf.fill f20=[temp1],32 ldf.fill f21=[temp2],32 ;; ldf.fill f22=[temp1],32 ldf.fill f23=[temp2],32 ;; ldf.fill f24=[temp1],32 ldf.fill f25=[temp2],32 ;; ldf.fill f26=[temp1],32 ldf.fill f27=[temp2],32 ;; ldf.fill f28=[temp1],32 ldf.fill f29=[temp2],32 ;; ldf.fill f30=[temp1],SW(B2)-SW(F30) ldf.fill f31=[temp2],SW(B3)-SW(F31) ;; ld8 temp3=[temp1],16 // restore b2 ld8 temp4=[temp2],16 // restore b3 ;; mov b2=temp3 mov b3=temp4 ld8 temp3=[temp1],SW(AR_LC)-SW(B4) // restore b4 ld8 temp4=[temp2] // restore b5 ;; mov b4=temp3 mov b5=temp4 ld8 temp3=[temp1] // restore ar.lc ;; mov ar.lc=temp3 // Restore the pt_regs data that is not in minstate. The previous code // left regs at switch_stack. add regs=MCA_PT_REGS_OFFSET-MCA_SWITCH_STACK_OFFSET, regs ;; add temp1=PT(B6), regs add temp2=PT(B7), regs ;; ld8 temp3=[temp1],PT(AR_CSD)-PT(B6) // restore b6 ld8 temp4=[temp2],PT(AR_SSD)-PT(B7) // restore b7 ;; mov b6=temp3 mov b7=temp4 ld8 temp3=[temp1],PT(AR_UNAT)-PT(AR_CSD) // restore ar.csd ld8 temp4=[temp2],PT(AR_PFS)-PT(AR_SSD) // restore ar.ssd ;; mov ar.csd=temp3 mov ar.ssd=temp4 ld8 temp3=[temp1] // restore ar.unat add temp1=PT(AR_CCV)-PT(AR_UNAT), temp1 ld8 temp4=[temp2],PT(AR_FPSR)-PT(AR_PFS) // restore ar.pfs ;; mov ar.unat=temp3 mov ar.pfs=temp4 // ar.rnat, ar.bspstore, loadrs are restore in ia64_old_stack. ld8 temp3=[temp1],PT(F6)-PT(AR_CCV) // restore ar.ccv ld8 temp4=[temp2],PT(F7)-PT(AR_FPSR) // restore ar.fpsr ;; mov ar.ccv=temp3 mov ar.fpsr=temp4 ldf.fill f6=[temp1],PT(F8)-PT(F6) ldf.fill f7=[temp2],PT(F9)-PT(F7) ;; ldf.fill f8=[temp1],PT(F10)-PT(F8) ldf.fill f9=[temp2],PT(F11)-PT(F9) ;; ldf.fill f10=[temp1] ldf.fill f11=[temp2] // Restore the SAL to OS state. The previous code left regs at pt_regs. add regs=MCA_SOS_OFFSET-MCA_PT_REGS_OFFSET, regs ;; add temp1=SOS(SAL_RA), regs add temp2=SOS(SAL_GP), regs ;; ld8 r12=[temp1],16 // sal_ra ld8 r9=[temp2],16 // sal_gp ;; ld8 r22=[temp1],16 // pal_min_state, virtual ld8 r13=[temp2],16 // prev_IA64_KR_CURRENT ;; ld8 r16=[temp1],16 // prev_IA64_KR_CURRENT_STACK ld8 r20=[temp2],16 // prev_task ;; ld8 temp3=[temp1],16 // cr.isr ld8 temp4=[temp2],16 // cr.ifa ;; mov cr.isr=temp3 mov cr.ifa=temp4 ld8 temp3=[temp1],16 // cr.itir ld8 temp4=[temp2],16 // cr.iipa ;; mov cr.itir=temp3 mov cr.iipa=temp4 ld8 temp3=[temp1] // cr.iim ld8 temp4=[temp2] // cr.iha add temp1=SOS(OS_STATUS), regs add temp2=SOS(CONTEXT), regs ;; mov cr.iim=temp3 mov cr.iha=temp4 dep r22=0,r22,62,1 // pal_min_state, physical, uncached mov IA64_KR(CURRENT)=r13 ld8 r8=[temp1] // os_status ld8 r10=[temp2] // context /* Wire IA64_TR_CURRENT_STACK to the stack that we are resuming to. To * avoid any dependencies on the algorithm in ia64_switch_to(), just * purge any existing CURRENT_STACK mapping and insert the new one. * * r16 contains prev_IA64_KR_CURRENT_STACK, r13 contains * prev_IA64_KR_CURRENT, these values may have been changed by the C * code. Do not use r8, r9, r10, r22, they contain values ready for * the return to SAL. */ mov r15=IA64_KR(CURRENT_STACK) // physical granule mapped by IA64_TR_CURRENT_STACK ;; shl r15=r15,IA64_GRANULE_SHIFT ;; dep r15=-1,r15,61,3 // virtual granule mov r18=IA64_GRANULE_SHIFT<<2 // for cr.itir.ps ;; ptr.d r15,r18 ;; srlz.d extr.u r19=r13,61,3 // r13 = prev_IA64_KR_CURRENT shl r20=r16,IA64_GRANULE_SHIFT // r16 = prev_IA64_KR_CURRENT_STACK movl r21=PAGE_KERNEL // page properties ;; mov IA64_KR(CURRENT_STACK)=r16 cmp.ne p6,p0=RGN_KERNEL,r19 // new stack is in the kernel region? or r21=r20,r21 // construct PA | page properties (p6) br.spnt 1f // the dreaded cpu 0 idle task in region 5:( ;; mov cr.itir=r18 mov cr.ifa=r13 mov r20=IA64_TR_CURRENT_STACK ;; itr.d dtr[r20]=r21 ;; srlz.d 1: br.sptk b0 //EndStub////////////////////////////////////////////////////////////////////// //++ // Name: // ia64_new_stack() // // Stub Description: // // Switch to the MCA/INIT stack. // // r2 contains the return address, r3 contains either // IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET. // // On entry RBS is still on the original stack, this routine switches RBS // to use the MCA/INIT stack. // // On entry, sos->pal_min_state is physical, on exit it is virtual. // //-- ia64_new_stack: add regs=MCA_PT_REGS_OFFSET, r3 add temp2=MCA_SOS_OFFSET+SOS(PAL_MIN_STATE), r3 mov b0=r2 // save return address GET_IA64_MCA_DATA(temp1) invala ;; add temp2=temp2, temp1 // struct ia64_sal_os_state.pal_min_state on MCA or INIT stack add regs=regs, temp1 // struct pt_regs on MCA or INIT stack ;; // Address of minstate area provided by PAL is physical, uncacheable. // Convert to Linux virtual address in region 6 for C code. ld8 ms=[temp2] // pal_min_state, physical ;; dep temp1=-1,ms,62,2 // set region 6 mov temp3=IA64_RBS_OFFSET-MCA_PT_REGS_OFFSET ;; st8 [temp2]=temp1 // pal_min_state, virtual add temp4=temp3, regs // start of bspstore on new stack ;; mov ar.bspstore=temp4 // switch RBS to MCA/INIT stack ;; flushrs // must be first in group br.sptk b0 //EndStub////////////////////////////////////////////////////////////////////// //++ // Name: // ia64_old_stack() // // Stub Description: // // Switch to the old stack. // // r2 contains the return address, r3 contains either // IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET. // // On entry, pal_min_state is virtual, on exit it is physical. // // On entry RBS is on the MCA/INIT stack, this routine switches RBS // back to the previous stack. // // The psr is set to all zeroes. SAL return requires either all zeroes or // just psr.mc set. Leaving psr.mc off allows INIT to be issued if this // code does not perform correctly. // // The dirty registers at the time of the event were flushed to the // MCA/INIT stack in ia64_pt_regs_save(). Restore the dirty registers // before reverting to the previous bspstore. //-- ia64_old_stack: add regs=MCA_PT_REGS_OFFSET, r3 mov b0=r2 // save return address GET_IA64_MCA_DATA(temp2) LOAD_PHYSICAL(p0,temp1,1f) ;; mov cr.ipsr=r0 mov cr.ifs=r0 mov cr.iip=temp1 ;; invala rfi 1: add regs=regs, temp2 // struct pt_regs on MCA or INIT stack ;; add temp1=PT(LOADRS), regs ;; ld8 temp2=[temp1],PT(AR_BSPSTORE)-PT(LOADRS) // restore loadrs ;; ld8 temp3=[temp1],PT(AR_RNAT)-PT(AR_BSPSTORE) // restore ar.bspstore mov ar.rsc=temp2 ;; loadrs ld8 temp4=[temp1] // restore ar.rnat ;; mov ar.bspstore=temp3 // back to old stack ;; mov ar.rnat=temp4 ;; br.sptk b0 //EndStub////////////////////////////////////////////////////////////////////// //++ // Name: // ia64_set_kernel_registers() // // Stub Description: // // Set the registers that are required by the C code in order to run on an // MCA/INIT stack. // // r2 contains the return address, r3 contains either // IA64_MCA_CPU_MCA_STACK_OFFSET or IA64_MCA_CPU_INIT_STACK_OFFSET. // //-- ia64_set_kernel_registers: add temp3=MCA_SP_OFFSET, r3 mov b0=r2 // save return address GET_IA64_MCA_DATA(temp1) ;; add r12=temp1, temp3 // kernel stack pointer on MCA/INIT stack add r13=temp1, r3 // set current to start of MCA/INIT stack add r20=temp1, r3 // physical start of MCA/INIT stack ;; DATA_PA_TO_VA(r12,temp2) DATA_PA_TO_VA(r13,temp3) ;; mov IA64_KR(CURRENT)=r13 /* Wire IA64_TR_CURRENT_STACK to the MCA/INIT handler stack. To avoid * any dependencies on the algorithm in ia64_switch_to(), just purge * any existing CURRENT_STACK mapping and insert the new one. */ mov r16=IA64_KR(CURRENT_STACK) // physical granule mapped by IA64_TR_CURRENT_STACK ;; shl r16=r16,IA64_GRANULE_SHIFT ;; dep r16=-1,r16,61,3 // virtual granule mov r18=IA64_GRANULE_SHIFT<<2 // for cr.itir.ps ;; ptr.d r16,r18 ;; srlz.d shr.u r16=r20,IA64_GRANULE_SHIFT // r20 = physical start of MCA/INIT stack movl r21=PAGE_KERNEL // page properties ;; mov IA64_KR(CURRENT_STACK)=r16 or r21=r20,r21 // construct PA | page properties ;; mov cr.itir=r18 mov cr.ifa=r13 mov r20=IA64_TR_CURRENT_STACK movl r17=FPSR_DEFAULT ;; mov.m ar.fpsr=r17 // set ar.fpsr to kernel default value ;; itr.d dtr[r20]=r21 ;; srlz.d br.sptk b0 //EndStub////////////////////////////////////////////////////////////////////// #undef ms #undef regs #undef temp1 #undef temp2 #undef temp3 #undef temp4 // Support function for mca.c, it is here to avoid using inline asm. Given the // address of an rnat slot, if that address is below the current ar.bspstore // then return the contents of that slot, otherwise return the contents of // ar.rnat. GLOBAL_ENTRY(ia64_get_rnat) alloc r14=ar.pfs,1,0,0,0 mov ar.rsc=0 ;; mov r14=ar.bspstore ;; cmp.lt p6,p7=in0,r14 ;; (p6) ld8 r8=[in0] (p7) mov r8=ar.rnat mov ar.rsc=3 br.ret.sptk.many rp END(ia64_get_rnat)