/* * linux/arch/ia64/kernel/time.c * * Copyright (C) 1998-2003 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * David Mosberger <davidm@hpl.hp.com> * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> * Copyright (C) 1999-2000 VA Linux Systems * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com> */ #include <linux/cpu.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/profile.h> #include <linux/sched.h> #include <linux/time.h> #include <linux/interrupt.h> #include <linux/efi.h> #include <linux/profile.h> #include <linux/timex.h> #include <asm/machvec.h> #include <asm/delay.h> #include <asm/hw_irq.h> #include <asm/ptrace.h> #include <asm/sal.h> #include <asm/sections.h> #include <asm/system.h> volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */ #ifdef CONFIG_IA64_DEBUG_IRQ unsigned long last_cli_ip; EXPORT_SYMBOL(last_cli_ip); #endif static struct time_interpolator itc_interpolator = { .shift = 16, .mask = 0xffffffffffffffffLL, .source = TIME_SOURCE_CPU }; static irqreturn_t timer_interrupt (int irq, void *dev_id) { unsigned long new_itm; if (unlikely(cpu_is_offline(smp_processor_id()))) { return IRQ_HANDLED; } platform_timer_interrupt(irq, dev_id); new_itm = local_cpu_data->itm_next; if (!time_after(ia64_get_itc(), new_itm)) printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n", ia64_get_itc(), new_itm); profile_tick(CPU_PROFILING); while (1) { update_process_times(user_mode(get_irq_regs())); new_itm += local_cpu_data->itm_delta; if (smp_processor_id() == time_keeper_id) { /* * Here we are in the timer irq handler. We have irqs locally * disabled, but we don't know if the timer_bh is running on * another CPU. We need to avoid to SMP race by acquiring the * xtime_lock. */ write_seqlock(&xtime_lock); do_timer(1); local_cpu_data->itm_next = new_itm; write_sequnlock(&xtime_lock); } else local_cpu_data->itm_next = new_itm; if (time_after(new_itm, ia64_get_itc())) break; /* * Allow IPIs to interrupt the timer loop. */ local_irq_enable(); local_irq_disable(); } do { /* * If we're too close to the next clock tick for * comfort, we increase the safety margin by * intentionally dropping the next tick(s). We do NOT * update itm.next because that would force us to call * do_timer() which in turn would let our clock run * too fast (with the potentially devastating effect * of losing monotony of time). */ while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2)) new_itm += local_cpu_data->itm_delta; ia64_set_itm(new_itm); /* double check, in case we got hit by a (slow) PMI: */ } while (time_after_eq(ia64_get_itc(), new_itm)); return IRQ_HANDLED; } /* * Encapsulate access to the itm structure for SMP. */ void ia64_cpu_local_tick (void) { int cpu = smp_processor_id(); unsigned long shift = 0, delta; /* arrange for the cycle counter to generate a timer interrupt: */ ia64_set_itv(IA64_TIMER_VECTOR); delta = local_cpu_data->itm_delta; /* * Stagger the timer tick for each CPU so they don't occur all at (almost) the * same time: */ if (cpu) { unsigned long hi = 1UL << ia64_fls(cpu); shift = (2*(cpu - hi) + 1) * delta/hi/2; } local_cpu_data->itm_next = ia64_get_itc() + delta + shift; ia64_set_itm(local_cpu_data->itm_next); } static int nojitter; static int __init nojitter_setup(char *str) { nojitter = 1; printk("Jitter checking for ITC timers disabled\n"); return 1; } __setup("nojitter", nojitter_setup); void __devinit ia64_init_itm (void) { unsigned long platform_base_freq, itc_freq; struct pal_freq_ratio itc_ratio, proc_ratio; long status, platform_base_drift, itc_drift; /* * According to SAL v2.6, we need to use a SAL call to determine the platform base * frequency and then a PAL call to determine the frequency ratio between the ITC * and the base frequency. */ status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, &platform_base_freq, &platform_base_drift); if (status != 0) { printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status)); } else { status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio); if (status != 0) printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status); } if (status != 0) { /* invent "random" values */ printk(KERN_ERR "SAL/PAL failed to obtain frequency info---inventing reasonable values\n"); platform_base_freq = 100000000; platform_base_drift = -1; /* no drift info */ itc_ratio.num = 3; itc_ratio.den = 1; } if (platform_base_freq < 40000000) { printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n", platform_base_freq); platform_base_freq = 75000000; platform_base_drift = -1; } if (!proc_ratio.den) proc_ratio.den = 1; /* avoid division by zero */ if (!itc_ratio.den) itc_ratio.den = 1; /* avoid division by zero */ itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den; local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ; printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, " "ITC freq=%lu.%03luMHz", smp_processor_id(), platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000, itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000); if (platform_base_drift != -1) { itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den; printk("+/-%ldppm\n", itc_drift); } else { itc_drift = -1; printk("\n"); } local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den; local_cpu_data->itc_freq = itc_freq; local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC; local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT) + itc_freq/2)/itc_freq; if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { itc_interpolator.frequency = local_cpu_data->itc_freq; itc_interpolator.drift = itc_drift; #ifdef CONFIG_SMP /* On IA64 in an SMP configuration ITCs are never accurately synchronized. * Jitter compensation requires a cmpxchg which may limit * the scalability of the syscalls for retrieving time. * The ITC synchronization is usually successful to within a few * ITC ticks but this is not a sure thing. If you need to improve * timer performance in SMP situations then boot the kernel with the * "nojitter" option. However, doing so may result in time fluctuating (maybe * even going backward) if the ITC offsets between the individual CPUs * are too large. */ if (!nojitter) itc_interpolator.jitter = 1; #endif register_time_interpolator(&itc_interpolator); } /* Setup the CPU local timer tick */ ia64_cpu_local_tick(); } static struct irqaction timer_irqaction = { .handler = timer_interrupt, .flags = IRQF_DISABLED, .name = "timer" }; void __devinit ia64_disable_timer(void) { ia64_set_itv(1 << 16); } void __init time_init (void) { register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction); efi_gettimeofday(&xtime); ia64_init_itm(); /* * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). */ set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); } /* * Generic udelay assumes that if preemption is allowed and the thread * migrates to another CPU, that the ITC values are synchronized across * all CPUs. */ static void ia64_itc_udelay (unsigned long usecs) { unsigned long start = ia64_get_itc(); unsigned long end = start + usecs*local_cpu_data->cyc_per_usec; while (time_before(ia64_get_itc(), end)) cpu_relax(); } void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay; void udelay (unsigned long usecs) { (*ia64_udelay)(usecs); } EXPORT_SYMBOL(udelay); static unsigned long long ia64_itc_printk_clock(void) { if (ia64_get_kr(IA64_KR_PER_CPU_DATA)) return sched_clock(); return 0; } static unsigned long long ia64_default_printk_clock(void) { return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) * (1000000000/HZ); } unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock; unsigned long long printk_clock(void) { return ia64_printk_clock(); } void __init ia64_setup_printk_clock(void) { if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) ia64_printk_clock = ia64_itc_printk_clock; }