/* * Architecture-specific unaligned trap handling. * * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * David Mosberger-Tang <davidm@hpl.hp.com> * * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame * stacked register returns an undefined value; it does NOT trigger a * "rsvd register fault"). * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops. * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes. * 2001/01/17 Add support emulation of unaligned kernel accesses. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/smp_lock.h> #include <linux/tty.h> #include <asm/intrinsics.h> #include <asm/processor.h> #include <asm/rse.h> #include <asm/uaccess.h> #include <asm/unaligned.h> extern void die_if_kernel(char *str, struct pt_regs *regs, long err); #undef DEBUG_UNALIGNED_TRAP #ifdef DEBUG_UNALIGNED_TRAP # define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0) # define DDUMP(str,vp,len) dump(str, vp, len) static void dump (const char *str, void *vp, size_t len) { unsigned char *cp = vp; int i; printk("%s", str); for (i = 0; i < len; ++i) printk (" %02x", *cp++); printk("\n"); } #else # define DPRINT(a...) # define DDUMP(str,vp,len) #endif #define IA64_FIRST_STACKED_GR 32 #define IA64_FIRST_ROTATING_FR 32 #define SIGN_EXT9 0xffffffffffffff00ul /* * sysctl settable hook which tells the kernel whether to honor the * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want * to allow the super user to enable/disable this for security reasons * (i.e. don't allow attacker to fill up logs with unaligned accesses). */ int no_unaligned_warning; static int noprint_warning; /* * For M-unit: * * opcode | m | x6 | * --------|------|---------| * [40-37] | [36] | [35:30] | * --------|------|---------| * 4 | 1 | 6 | = 11 bits * -------------------------- * However bits [31:30] are not directly useful to distinguish between * load/store so we can use [35:32] instead, which gives the following * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer * checking the m-bit until later in the load/store emulation. */ #define IA64_OPCODE_MASK 0x1ef #define IA64_OPCODE_SHIFT 32 /* * Table C-28 Integer Load/Store * * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF * * ld8.fill, st8.fill MUST be aligned because the RNATs are based on * the address (bits [8:3]), so we must failed. */ #define LD_OP 0x080 #define LDS_OP 0x081 #define LDA_OP 0x082 #define LDSA_OP 0x083 #define LDBIAS_OP 0x084 #define LDACQ_OP 0x085 /* 0x086, 0x087 are not relevant */ #define LDCCLR_OP 0x088 #define LDCNC_OP 0x089 #define LDCCLRACQ_OP 0x08a #define ST_OP 0x08c #define STREL_OP 0x08d /* 0x08e,0x8f are not relevant */ /* * Table C-29 Integer Load +Reg * * we use the ld->m (bit [36:36]) field to determine whether or not we have * a load/store of this form. */ /* * Table C-30 Integer Load/Store +Imm * * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF * * ld8.fill, st8.fill must be aligned because the Nat register are based on * the address, so we must fail and the program must be fixed. */ #define LD_IMM_OP 0x0a0 #define LDS_IMM_OP 0x0a1 #define LDA_IMM_OP 0x0a2 #define LDSA_IMM_OP 0x0a3 #define LDBIAS_IMM_OP 0x0a4 #define LDACQ_IMM_OP 0x0a5 /* 0x0a6, 0xa7 are not relevant */ #define LDCCLR_IMM_OP 0x0a8 #define LDCNC_IMM_OP 0x0a9 #define LDCCLRACQ_IMM_OP 0x0aa #define ST_IMM_OP 0x0ac #define STREL_IMM_OP 0x0ad /* 0x0ae,0xaf are not relevant */ /* * Table C-32 Floating-point Load/Store */ #define LDF_OP 0x0c0 #define LDFS_OP 0x0c1 #define LDFA_OP 0x0c2 #define LDFSA_OP 0x0c3 /* 0x0c6 is irrelevant */ #define LDFCCLR_OP 0x0c8 #define LDFCNC_OP 0x0c9 /* 0x0cb is irrelevant */ #define STF_OP 0x0cc /* * Table C-33 Floating-point Load +Reg * * we use the ld->m (bit [36:36]) field to determine whether or not we have * a load/store of this form. */ /* * Table C-34 Floating-point Load/Store +Imm */ #define LDF_IMM_OP 0x0e0 #define LDFS_IMM_OP 0x0e1 #define LDFA_IMM_OP 0x0e2 #define LDFSA_IMM_OP 0x0e3 /* 0x0e6 is irrelevant */ #define LDFCCLR_IMM_OP 0x0e8 #define LDFCNC_IMM_OP 0x0e9 #define STF_IMM_OP 0x0ec typedef struct { unsigned long qp:6; /* [0:5] */ unsigned long r1:7; /* [6:12] */ unsigned long imm:7; /* [13:19] */ unsigned long r3:7; /* [20:26] */ unsigned long x:1; /* [27:27] */ unsigned long hint:2; /* [28:29] */ unsigned long x6_sz:2; /* [30:31] */ unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */ unsigned long m:1; /* [36:36] */ unsigned long op:4; /* [37:40] */ unsigned long pad:23; /* [41:63] */ } load_store_t; typedef enum { UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */ UPD_REG /* ldXZ r1=[r3],r2 */ } update_t; /* * We use tables to keep track of the offsets of registers in the saved state. * This way we save having big switch/case statements. * * We use bit 0 to indicate switch_stack or pt_regs. * The offset is simply shifted by 1 bit. * A 2-byte value should be enough to hold any kind of offset * * In case the calling convention changes (and thus pt_regs/switch_stack) * simply use RSW instead of RPT or vice-versa. */ #define RPO(x) ((size_t) &((struct pt_regs *)0)->x) #define RSO(x) ((size_t) &((struct switch_stack *)0)->x) #define RPT(x) (RPO(x) << 1) #define RSW(x) (1| RSO(x)<<1) #define GR_OFFS(x) (gr_info[x]>>1) #define GR_IN_SW(x) (gr_info[x] & 0x1) #define FR_OFFS(x) (fr_info[x]>>1) #define FR_IN_SW(x) (fr_info[x] & 0x1) static u16 gr_info[32]={ 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */ RPT(r1), RPT(r2), RPT(r3), RSW(r4), RSW(r5), RSW(r6), RSW(r7), RPT(r8), RPT(r9), RPT(r10), RPT(r11), RPT(r12), RPT(r13), RPT(r14), RPT(r15), RPT(r16), RPT(r17), RPT(r18), RPT(r19), RPT(r20), RPT(r21), RPT(r22), RPT(r23), RPT(r24), RPT(r25), RPT(r26), RPT(r27), RPT(r28), RPT(r29), RPT(r30), RPT(r31) }; static u16 fr_info[32]={ 0, /* constant : WE SHOULD NEVER GET THIS */ 0, /* constant : WE SHOULD NEVER GET THIS */ RSW(f2), RSW(f3), RSW(f4), RSW(f5), RPT(f6), RPT(f7), RPT(f8), RPT(f9), RPT(f10), RPT(f11), RSW(f12), RSW(f13), RSW(f14), RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), RSW(f30), RSW(f31) }; /* Invalidate ALAT entry for integer register REGNO. */ static void invala_gr (int regno) { # define F(reg) case reg: ia64_invala_gr(reg); break switch (regno) { F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); } # undef F } /* Invalidate ALAT entry for floating-point register REGNO. */ static void invala_fr (int regno) { # define F(reg) case reg: ia64_invala_fr(reg); break switch (regno) { F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); } # undef F } static inline unsigned long rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg) { reg += rrb; if (reg >= sor) reg -= sor; return reg; } static void set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) { struct switch_stack *sw = (struct switch_stack *) regs - 1; unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end; unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; unsigned long rnats, nat_mask; unsigned long on_kbs; long sof = (regs->cr_ifs) & 0x7f; long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; long ridx = r1 - 32; if (ridx >= sof) { /* this should never happen, as the "rsvd register fault" has higher priority */ DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof); return; } if (ridx < sor) ridx = rotate_reg(sor, rrb_gr, ridx); DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); if (addr >= kbs) { /* the register is on the kernel backing store: easy... */ rnat_addr = ia64_rse_rnat_addr(addr); if ((unsigned long) rnat_addr >= sw->ar_bspstore) rnat_addr = &sw->ar_rnat; nat_mask = 1UL << ia64_rse_slot_num(addr); *addr = val; if (nat) *rnat_addr |= nat_mask; else *rnat_addr &= ~nat_mask; return; } if (!user_stack(current, regs)) { DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1); return; } bspstore = (unsigned long *)regs->ar_bspstore; ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); bsp = ia64_rse_skip_regs(ubs_end, -sof); addr = ia64_rse_skip_regs(bsp, ridx); DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); rnat_addr = ia64_rse_rnat_addr(addr); ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n", (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1); nat_mask = 1UL << ia64_rse_slot_num(addr); if (nat) rnats |= nat_mask; else rnats &= ~nat_mask; ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats); DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats); } static void get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) { struct switch_stack *sw = (struct switch_stack *) regs - 1; unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore; unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; unsigned long rnats, nat_mask; unsigned long on_kbs; long sof = (regs->cr_ifs) & 0x7f; long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; long ridx = r1 - 32; if (ridx >= sof) { /* read of out-of-frame register returns an undefined value; 0 in our case. */ DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof); goto fail; } if (ridx < sor) ridx = rotate_reg(sor, rrb_gr, ridx); DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); if (addr >= kbs) { /* the register is on the kernel backing store: easy... */ *val = *addr; if (nat) { rnat_addr = ia64_rse_rnat_addr(addr); if ((unsigned long) rnat_addr >= sw->ar_bspstore) rnat_addr = &sw->ar_rnat; nat_mask = 1UL << ia64_rse_slot_num(addr); *nat = (*rnat_addr & nat_mask) != 0; } return; } if (!user_stack(current, regs)) { DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1); goto fail; } bspstore = (unsigned long *)regs->ar_bspstore; ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); bsp = ia64_rse_skip_regs(ubs_end, -sof); addr = ia64_rse_skip_regs(bsp, ridx); DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); if (nat) { rnat_addr = ia64_rse_rnat_addr(addr); nat_mask = 1UL << ia64_rse_slot_num(addr); DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats); ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); *nat = (rnats & nat_mask) != 0; } return; fail: *val = 0; if (nat) *nat = 0; return; } static void setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *) regs - 1; unsigned long addr; unsigned long bitmask; unsigned long *unat; /* * First takes care of stacked registers */ if (regnum >= IA64_FIRST_STACKED_GR) { set_rse_reg(regs, regnum, val, nat); return; } /* * Using r0 as a target raises a General Exception fault which has higher priority * than the Unaligned Reference fault. */ /* * Now look at registers in [0-31] range and init correct UNAT */ if (GR_IN_SW(regnum)) { addr = (unsigned long)sw; unat = &sw->ar_unat; } else { addr = (unsigned long)regs; unat = &sw->caller_unat; } DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n", addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum)); /* * add offset from base of struct * and do it ! */ addr += GR_OFFS(regnum); *(unsigned long *)addr = val; /* * We need to clear the corresponding UNAT bit to fully emulate the load * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 */ bitmask = 1UL << (addr >> 3 & 0x3f); DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat); if (nat) { *unat |= bitmask; } else { *unat &= ~bitmask; } DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat); } /* * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the * range from 32-127, result is in the range from 0-95. */ static inline unsigned long fph_index (struct pt_regs *regs, long regnum) { unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f; return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR)); } static void setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *)regs - 1; unsigned long addr; /* * From EAS-2.5: FPDisableFault has higher priority than Unaligned * Fault. Thus, when we get here, we know the partition is enabled. * To update f32-f127, there are three choices: * * (1) save f32-f127 to thread.fph and update the values there * (2) use a gigantic switch statement to directly access the registers * (3) generate code on the fly to update the desired register * * For now, we are using approach (1). */ if (regnum >= IA64_FIRST_ROTATING_FR) { ia64_sync_fph(current); current->thread.fph[fph_index(regs, regnum)] = *fpval; } else { /* * pt_regs or switch_stack ? */ if (FR_IN_SW(regnum)) { addr = (unsigned long)sw; } else { addr = (unsigned long)regs; } DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum)); addr += FR_OFFS(regnum); *(struct ia64_fpreg *)addr = *fpval; /* * mark the low partition as being used now * * It is highly unlikely that this bit is not already set, but * let's do it for safety. */ regs->cr_ipsr |= IA64_PSR_MFL; } } /* * Those 2 inline functions generate the spilled versions of the constant floating point * registers which can be used with stfX */ static inline void float_spill_f0 (struct ia64_fpreg *final) { ia64_stf_spill(final, 0); } static inline void float_spill_f1 (struct ia64_fpreg *final) { ia64_stf_spill(final, 1); } static void getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *) regs - 1; unsigned long addr; /* * From EAS-2.5: FPDisableFault has higher priority than * Unaligned Fault. Thus, when we get here, we know the partition is * enabled. * * When regnum > 31, the register is still live and we need to force a save * to current->thread.fph to get access to it. See discussion in setfpreg() * for reasons and other ways of doing this. */ if (regnum >= IA64_FIRST_ROTATING_FR) { ia64_flush_fph(current); *fpval = current->thread.fph[fph_index(regs, regnum)]; } else { /* * f0 = 0.0, f1= 1.0. Those registers are constant and are thus * not saved, we must generate their spilled form on the fly */ switch(regnum) { case 0: float_spill_f0(fpval); break; case 1: float_spill_f1(fpval); break; default: /* * pt_regs or switch_stack ? */ addr = FR_IN_SW(regnum) ? (unsigned long)sw : (unsigned long)regs; DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n", FR_IN_SW(regnum), addr, FR_OFFS(regnum)); addr += FR_OFFS(regnum); *fpval = *(struct ia64_fpreg *)addr; } } } static void getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *) regs - 1; unsigned long addr, *unat; if (regnum >= IA64_FIRST_STACKED_GR) { get_rse_reg(regs, regnum, val, nat); return; } /* * take care of r0 (read-only always evaluate to 0) */ if (regnum == 0) { *val = 0; if (nat) *nat = 0; return; } /* * Now look at registers in [0-31] range and init correct UNAT */ if (GR_IN_SW(regnum)) { addr = (unsigned long)sw; unat = &sw->ar_unat; } else { addr = (unsigned long)regs; unat = &sw->caller_unat; } DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum)); addr += GR_OFFS(regnum); *val = *(unsigned long *)addr; /* * do it only when requested */ if (nat) *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; } static void emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa) { /* * IMPORTANT: * Given the way we handle unaligned speculative loads, we should * not get to this point in the code but we keep this sanity check, * just in case. */ if (ld.x6_op == 1 || ld.x6_op == 3) { printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__); die_if_kernel("unaligned reference on speculative load with register update\n", regs, 30); } /* * at this point, we know that the base register to update is valid i.e., * it's not r0 */ if (type == UPD_IMMEDIATE) { unsigned long imm; /* * Load +Imm: ldXZ r1=[r3],imm(9) * * * form imm9: [13:19] contain the first 7 bits */ imm = ld.x << 7 | ld.imm; /* * sign extend (1+8bits) if m set */ if (ld.m) imm |= SIGN_EXT9; /* * ifa == r3 and we know that the NaT bit on r3 was clear so * we can directly use ifa. */ ifa += imm; setreg(ld.r3, ifa, 0, regs); DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa); } else if (ld.m) { unsigned long r2; int nat_r2; /* * Load +Reg Opcode: ldXZ r1=[r3],r2 * * Note: that we update r3 even in the case of ldfX.a * (where the load does not happen) * * The way the load algorithm works, we know that r3 does not * have its NaT bit set (would have gotten NaT consumption * before getting the unaligned fault). So we can use ifa * which equals r3 at this point. * * IMPORTANT: * The above statement holds ONLY because we know that we * never reach this code when trying to do a ldX.s. * If we ever make it to here on an ldfX.s then */ getreg(ld.imm, &r2, &nat_r2, regs); ifa += r2; /* * propagate Nat r2 -> r3 */ setreg(ld.r3, ifa, nat_r2, regs); DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2); } } static int emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) { unsigned int len = 1 << ld.x6_sz; unsigned long val = 0; /* * r0, as target, doesn't need to be checked because Illegal Instruction * faults have higher priority than unaligned faults. * * r0 cannot be found as the base as it would never generate an * unaligned reference. */ /* * ldX.a we will emulate load and also invalidate the ALAT entry. * See comment below for explanation on how we handle ldX.a */ if (len != 2 && len != 4 && len != 8) { DPRINT("unknown size: x6=%d\n", ld.x6_sz); return -1; } /* this assumes little-endian byte-order: */ if (copy_from_user(&val, (void __user *) ifa, len)) return -1; setreg(ld.r1, val, 0, regs); /* * check for updates on any kind of loads */ if (ld.op == 0x5 || ld.m) emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); /* * handling of various loads (based on EAS2.4): * * ldX.acq (ordered load): * - acquire semantics would have been used, so force fence instead. * * ldX.c.clr (check load and clear): * - if we get to this handler, it's because the entry was not in the ALAT. * Therefore the operation reverts to a normal load * * ldX.c.nc (check load no clear): * - same as previous one * * ldX.c.clr.acq (ordered check load and clear): * - same as above for c.clr part. The load needs to have acquire semantics. So * we use the fence semantics which is stronger and thus ensures correctness. * * ldX.a (advanced load): * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the * address doesn't match requested size alignment. This means that we would * possibly need more than one load to get the result. * * The load part can be handled just like a normal load, however the difficult * part is to get the right thing into the ALAT. The critical piece of information * in the base address of the load & size. To do that, a ld.a must be executed, * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now * if we use the same target register, we will be okay for the check.a instruction. * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry * which would overlap within [r3,r3+X] (the size of the load was store in the * ALAT). If such an entry is found the entry is invalidated. But this is not good * enough, take the following example: * r3=3 * ld4.a r1=[r3] * * Could be emulated by doing: * ld1.a r1=[r3],1 * store to temporary; * ld1.a r1=[r3],1 * store & shift to temporary; * ld1.a r1=[r3],1 * store & shift to temporary; * ld1.a r1=[r3] * store & shift to temporary; * r1=temporary * * So in this case, you would get the right value is r1 but the wrong info in * the ALAT. Notice that you could do it in reverse to finish with address 3 * but you would still get the size wrong. To get the size right, one needs to * execute exactly the same kind of load. You could do it from a aligned * temporary location, but you would get the address wrong. * * So no matter what, it is not possible to emulate an advanced load * correctly. But is that really critical ? * * We will always convert ld.a into a normal load with ALAT invalidated. This * will enable compiler to do optimization where certain code path after ld.a * is not required to have ld.c/chk.a, e.g., code path with no intervening stores. * * If there is a store after the advanced load, one must either do a ld.c.* or * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no * entry found in ALAT), and that's perfectly ok because: * * - ld.c.*, if the entry is not present a normal load is executed * - chk.a.*, if the entry is not present, execution jumps to recovery code * * In either case, the load can be potentially retried in another form. * * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick * up a stale entry later). The register base update MUST also be performed. */ /* * when the load has the .acq completer then * use ordering fence. */ if (ld.x6_op == 0x5 || ld.x6_op == 0xa) mb(); /* * invalidate ALAT entry in case of advanced load */ if (ld.x6_op == 0x2) invala_gr(ld.r1); return 0; } static int emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) { unsigned long r2; unsigned int len = 1 << ld.x6_sz; /* * if we get to this handler, Nat bits on both r3 and r2 have already * been checked. so we don't need to do it * * extract the value to be stored */ getreg(ld.imm, &r2, NULL, regs); /* * we rely on the macros in unaligned.h for now i.e., * we let the compiler figure out how to read memory gracefully. * * We need this switch/case because the way the inline function * works. The code is optimized by the compiler and looks like * a single switch/case. */ DPRINT("st%d [%lx]=%lx\n", len, ifa, r2); if (len != 2 && len != 4 && len != 8) { DPRINT("unknown size: x6=%d\n", ld.x6_sz); return -1; } /* this assumes little-endian byte-order: */ if (copy_to_user((void __user *) ifa, &r2, len)) return -1; /* * stX [r3]=r2,imm(9) * * NOTE: * ld.r3 can never be r0, because r0 would not generate an * unaligned access. */ if (ld.op == 0x5) { unsigned long imm; /* * form imm9: [12:6] contain first 7bits */ imm = ld.x << 7 | ld.r1; /* * sign extend (8bits) if m set */ if (ld.m) imm |= SIGN_EXT9; /* * ifa == r3 (NaT is necessarily cleared) */ ifa += imm; DPRINT("imm=%lx r3=%lx\n", imm, ifa); setreg(ld.r3, ifa, 0, regs); } /* * we don't have alat_invalidate_multiple() so we need * to do the complete flush :-<< */ ia64_invala(); /* * stX.rel: use fence instead of release */ if (ld.x6_op == 0xd) mb(); return 0; } /* * floating point operations sizes in bytes */ static const unsigned char float_fsz[4]={ 10, /* extended precision (e) */ 8, /* integer (8) */ 4, /* single precision (s) */ 8 /* double precision (d) */ }; static inline void mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldfe(6, init); ia64_stop(); ia64_stf_spill(final, 6); } static inline void mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldf8(6, init); ia64_stop(); ia64_stf_spill(final, 6); } static inline void mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldfs(6, init); ia64_stop(); ia64_stf_spill(final, 6); } static inline void mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldfd(6, init); ia64_stop(); ia64_stf_spill(final, 6); } static inline void float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldf_fill(6, init); ia64_stop(); ia64_stfe(final, 6); } static inline void float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldf_fill(6, init); ia64_stop(); ia64_stf8(final, 6); } static inline void float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldf_fill(6, init); ia64_stop(); ia64_stfs(final, 6); } static inline void float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final) { ia64_ldf_fill(6, init); ia64_stop(); ia64_stfd(final, 6); } static int emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs) { struct ia64_fpreg fpr_init[2]; struct ia64_fpreg fpr_final[2]; unsigned long len = float_fsz[ld.x6_sz]; /* * fr0 & fr1 don't need to be checked because Illegal Instruction faults have * higher priority than unaligned faults. * * r0 cannot be found as the base as it would never generate an unaligned * reference. */ /* * make sure we get clean buffers */ memset(&fpr_init, 0, sizeof(fpr_init)); memset(&fpr_final, 0, sizeof(fpr_final)); /* * ldfpX.a: we don't try to emulate anything but we must * invalidate the ALAT entry and execute updates, if any. */ if (ld.x6_op != 0x2) { /* * This assumes little-endian byte-order. Note that there is no "ldfpe" * instruction: */ if (copy_from_user(&fpr_init[0], (void __user *) ifa, len) || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len)) return -1; DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz); DDUMP("frp_init =", &fpr_init, 2*len); /* * XXX fixme * Could optimize inlines by using ldfpX & 2 spills */ switch( ld.x6_sz ) { case 0: mem2float_extended(&fpr_init[0], &fpr_final[0]); mem2float_extended(&fpr_init[1], &fpr_final[1]); break; case 1: mem2float_integer(&fpr_init[0], &fpr_final[0]); mem2float_integer(&fpr_init[1], &fpr_final[1]); break; case 2: mem2float_single(&fpr_init[0], &fpr_final[0]); mem2float_single(&fpr_init[1], &fpr_final[1]); break; case 3: mem2float_double(&fpr_init[0], &fpr_final[0]); mem2float_double(&fpr_init[1], &fpr_final[1]); break; } DDUMP("fpr_final =", &fpr_final, 2*len); /* * XXX fixme * * A possible optimization would be to drop fpr_final and directly * use the storage from the saved context i.e., the actual final * destination (pt_regs, switch_stack or thread structure). */ setfpreg(ld.r1, &fpr_final[0], regs); setfpreg(ld.imm, &fpr_final[1], regs); } /* * Check for updates: only immediate updates are available for this * instruction. */ if (ld.m) { /* * the immediate is implicit given the ldsz of the operation: * single: 8 (2x4) and for all others it's 16 (2x8) */ ifa += len<<1; /* * IMPORTANT: * the fact that we force the NaT of r3 to zero is ONLY valid * as long as we don't come here with a ldfpX.s. * For this reason we keep this sanity check */ if (ld.x6_op == 1 || ld.x6_op == 3) printk(KERN_ERR "%s: register update on speculative load pair, error\n", __FUNCTION__); setreg(ld.r3, ifa, 0, regs); } /* * Invalidate ALAT entries, if any, for both registers. */ if (ld.x6_op == 0x2) { invala_fr(ld.r1); invala_fr(ld.imm); } return 0; } static int emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) { struct ia64_fpreg fpr_init; struct ia64_fpreg fpr_final; unsigned long len = float_fsz[ld.x6_sz]; /* * fr0 & fr1 don't need to be checked because Illegal Instruction * faults have higher priority than unaligned faults. * * r0 cannot be found as the base as it would never generate an * unaligned reference. */ /* * make sure we get clean buffers */ memset(&fpr_init,0, sizeof(fpr_init)); memset(&fpr_final,0, sizeof(fpr_final)); /* * ldfX.a we don't try to emulate anything but we must * invalidate the ALAT entry. * See comments in ldX for descriptions on how the various loads are handled. */ if (ld.x6_op != 0x2) { if (copy_from_user(&fpr_init, (void __user *) ifa, len)) return -1; DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); DDUMP("fpr_init =", &fpr_init, len); /* * we only do something for x6_op={0,8,9} */ switch( ld.x6_sz ) { case 0: mem2float_extended(&fpr_init, &fpr_final); break; case 1: mem2float_integer(&fpr_init, &fpr_final); break; case 2: mem2float_single(&fpr_init, &fpr_final); break; case 3: mem2float_double(&fpr_init, &fpr_final); break; } DDUMP("fpr_final =", &fpr_final, len); /* * XXX fixme * * A possible optimization would be to drop fpr_final and directly * use the storage from the saved context i.e., the actual final * destination (pt_regs, switch_stack or thread structure). */ setfpreg(ld.r1, &fpr_final, regs); } /* * check for updates on any loads */ if (ld.op == 0x7 || ld.m) emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); /* * invalidate ALAT entry in case of advanced floating point loads */ if (ld.x6_op == 0x2) invala_fr(ld.r1); return 0; } static int emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) { struct ia64_fpreg fpr_init; struct ia64_fpreg fpr_final; unsigned long len = float_fsz[ld.x6_sz]; /* * make sure we get clean buffers */ memset(&fpr_init,0, sizeof(fpr_init)); memset(&fpr_final,0, sizeof(fpr_final)); /* * if we get to this handler, Nat bits on both r3 and r2 have already * been checked. so we don't need to do it * * extract the value to be stored */ getfpreg(ld.imm, &fpr_init, regs); /* * during this step, we extract the spilled registers from the saved * context i.e., we refill. Then we store (no spill) to temporary * aligned location */ switch( ld.x6_sz ) { case 0: float2mem_extended(&fpr_init, &fpr_final); break; case 1: float2mem_integer(&fpr_init, &fpr_final); break; case 2: float2mem_single(&fpr_init, &fpr_final); break; case 3: float2mem_double(&fpr_init, &fpr_final); break; } DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); DDUMP("fpr_init =", &fpr_init, len); DDUMP("fpr_final =", &fpr_final, len); if (copy_to_user((void __user *) ifa, &fpr_final, len)) return -1; /* * stfX [r3]=r2,imm(9) * * NOTE: * ld.r3 can never be r0, because r0 would not generate an * unaligned access. */ if (ld.op == 0x7) { unsigned long imm; /* * form imm9: [12:6] contain first 7bits */ imm = ld.x << 7 | ld.r1; /* * sign extend (8bits) if m set */ if (ld.m) imm |= SIGN_EXT9; /* * ifa == r3 (NaT is necessarily cleared) */ ifa += imm; DPRINT("imm=%lx r3=%lx\n", imm, ifa); setreg(ld.r3, ifa, 0, regs); } /* * we don't have alat_invalidate_multiple() so we need * to do the complete flush :-<< */ ia64_invala(); return 0; } /* * Make sure we log the unaligned access, so that user/sysadmin can notice it and * eventually fix the program. However, we don't want to do that for every access so we * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be * either... */ static int within_logging_rate_limit (void) { static unsigned long count, last_time; if (jiffies - last_time > 5*HZ) count = 0; if (count < 5) { last_time = jiffies; count++; return 1; } return 0; } void ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs) { struct ia64_psr *ipsr = ia64_psr(regs); mm_segment_t old_fs = get_fs(); unsigned long bundle[2]; unsigned long opcode; struct siginfo si; const struct exception_table_entry *eh = NULL; union { unsigned long l; load_store_t insn; } u; int ret = -1; if (ia64_psr(regs)->be) { /* we don't support big-endian accesses */ die_if_kernel("big-endian unaligned accesses are not supported", regs, 0); goto force_sigbus; } /* * Treat kernel accesses for which there is an exception handler entry the same as * user-level unaligned accesses. Otherwise, a clever program could trick this * handler into reading an arbitrary kernel addresses... */ if (!user_mode(regs)) eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); if (user_mode(regs) || eh) { if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0) goto force_sigbus; if (!no_unaligned_warning && !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) && within_logging_rate_limit()) { char buf[200]; /* comm[] is at most 16 bytes... */ size_t len; len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, " "ip=0x%016lx\n\r", current->comm, current->pid, ifa, regs->cr_iip + ipsr->ri); /* * Don't call tty_write_message() if we're in the kernel; we might * be holding locks... */ if (user_mode(regs)) tty_write_message(current->signal->tty, buf); buf[len-1] = '\0'; /* drop '\r' */ /* watch for command names containing %s */ printk(KERN_WARNING "%s", buf); } else { if (no_unaligned_warning && !noprint_warning) { noprint_warning = 1; printk(KERN_WARNING "%s(%d) encountered an " "unaligned exception which required\n" "kernel assistance, which degrades " "the performance of the application.\n" "Unaligned exception warnings have " "been disabled by the system " "administrator\n" "echo 0 > /proc/sys/kernel/ignore-" "unaligned-usertrap to re-enable\n", current->comm, current->pid); } } } else { if (within_logging_rate_limit()) printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n", ifa, regs->cr_iip + ipsr->ri); set_fs(KERNEL_DS); } DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n", regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it); if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16)) goto failure; /* * extract the instruction from the bundle given the slot number */ switch (ipsr->ri) { case 0: u.l = (bundle[0] >> 5); break; case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break; case 2: u.l = (bundle[1] >> 23); break; } opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK; DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm, u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op); /* * IMPORTANT: * Notice that the switch statement DOES not cover all possible instructions * that DO generate unaligned references. This is made on purpose because for some * instructions it DOES NOT make sense to try and emulate the access. Sometimes it * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., * the program will get a signal and die: * * load/store: * - ldX.spill * - stX.spill * Reason: RNATs are based on addresses * - ld16 * - st16 * Reason: ld16 and st16 are supposed to occur in a single * memory op * * synchronization: * - cmpxchg * - fetchadd * - xchg * Reason: ATOMIC operations cannot be emulated properly using multiple * instructions. * * speculative loads: * - ldX.sZ * Reason: side effects, code must be ready to deal with failure so simpler * to let the load fail. * --------------------------------------------------------------------------------- * XXX fixme * * I would like to get rid of this switch case and do something * more elegant. */ switch (opcode) { case LDS_OP: case LDSA_OP: if (u.insn.x) /* oops, really a semaphore op (cmpxchg, etc) */ goto failure; /* no break */ case LDS_IMM_OP: case LDSA_IMM_OP: case LDFS_OP: case LDFSA_OP: case LDFS_IMM_OP: /* * The instruction will be retried with deferred exceptions turned on, and * we should get Nat bit installed * * IMPORTANT: When PSR_ED is set, the register & immediate update forms * are actually executed even though the operation failed. So we don't * need to take care of this. */ DPRINT("forcing PSR_ED\n"); regs->cr_ipsr |= IA64_PSR_ED; goto done; case LD_OP: case LDA_OP: case LDBIAS_OP: case LDACQ_OP: case LDCCLR_OP: case LDCNC_OP: case LDCCLRACQ_OP: if (u.insn.x) /* oops, really a semaphore op (cmpxchg, etc) */ goto failure; /* no break */ case LD_IMM_OP: case LDA_IMM_OP: case LDBIAS_IMM_OP: case LDACQ_IMM_OP: case LDCCLR_IMM_OP: case LDCNC_IMM_OP: case LDCCLRACQ_IMM_OP: ret = emulate_load_int(ifa, u.insn, regs); break; case ST_OP: case STREL_OP: if (u.insn.x) /* oops, really a semaphore op (cmpxchg, etc) */ goto failure; /* no break */ case ST_IMM_OP: case STREL_IMM_OP: ret = emulate_store_int(ifa, u.insn, regs); break; case LDF_OP: case LDFA_OP: case LDFCCLR_OP: case LDFCNC_OP: case LDF_IMM_OP: case LDFA_IMM_OP: case LDFCCLR_IMM_OP: case LDFCNC_IMM_OP: if (u.insn.x) ret = emulate_load_floatpair(ifa, u.insn, regs); else ret = emulate_load_float(ifa, u.insn, regs); break; case STF_OP: case STF_IMM_OP: ret = emulate_store_float(ifa, u.insn, regs); break; default: goto failure; } DPRINT("ret=%d\n", ret); if (ret) goto failure; if (ipsr->ri == 2) /* * given today's architecture this case is not likely to happen because a * memory access instruction (M) can never be in the last slot of a * bundle. But let's keep it for now. */ regs->cr_iip += 16; ipsr->ri = (ipsr->ri + 1) & 0x3; DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip); done: set_fs(old_fs); /* restore original address limit */ return; failure: /* something went wrong... */ if (!user_mode(regs)) { if (eh) { ia64_handle_exception(regs, eh); goto done; } die_if_kernel("error during unaligned kernel access\n", regs, ret); /* NOT_REACHED */ } force_sigbus: si.si_signo = SIGBUS; si.si_errno = 0; si.si_code = BUS_ADRALN; si.si_addr = (void __user *) ifa; si.si_flags = 0; si.si_isr = 0; si.si_imm = 0; force_sig_info(SIGBUS, &si, current); goto done; }