/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. * * Routines used by ia64 machines with contiguous (or virtually contiguous) * memory. */ #include <linux/config.h> #include <linux/bootmem.h> #include <linux/efi.h> #include <linux/mm.h> #include <linux/swap.h> #include <asm/meminit.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/sections.h> #include <asm/mca.h> #ifdef CONFIG_VIRTUAL_MEM_MAP static unsigned long num_dma_physpages; #endif /** * show_mem - display a memory statistics summary * * Just walks the pages in the system and describes where they're allocated. */ void show_mem (void) { int i, total = 0, reserved = 0; int shared = 0, cached = 0; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { if (!pfn_valid(i)) continue; total++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (page_count(mem_map + i)) shared += page_count(mem_map + i) - 1; } printk("%d pages of RAM\n", total); printk("%d reserved pages\n", reserved); printk("%d pages shared\n", shared); printk("%d pages swap cached\n", cached); printk("%ld pages in page table cache\n", pgtable_quicklist_total_size()); } /* physical address where the bootmem map is located */ unsigned long bootmap_start; /** * find_max_pfn - adjust the maximum page number callback * @start: start of range * @end: end of range * @arg: address of pointer to global max_pfn variable * * Passed as a callback function to efi_memmap_walk() to determine the highest * available page frame number in the system. */ int find_max_pfn (unsigned long start, unsigned long end, void *arg) { unsigned long *max_pfnp = arg, pfn; pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT; if (pfn > *max_pfnp) *max_pfnp = pfn; return 0; } /** * find_bootmap_location - callback to find a memory area for the bootmap * @start: start of region * @end: end of region * @arg: unused callback data * * Find a place to put the bootmap and return its starting address in * bootmap_start. This address must be page-aligned. */ int find_bootmap_location (unsigned long start, unsigned long end, void *arg) { unsigned long needed = *(unsigned long *)arg; unsigned long range_start, range_end, free_start; int i; #if IGNORE_PFN0 if (start == PAGE_OFFSET) { start += PAGE_SIZE; if (start >= end) return 0; } #endif free_start = PAGE_OFFSET; for (i = 0; i < num_rsvd_regions; i++) { range_start = max(start, free_start); range_end = min(end, rsvd_region[i].start & PAGE_MASK); free_start = PAGE_ALIGN(rsvd_region[i].end); if (range_end <= range_start) continue; /* skip over empty range */ if (range_end - range_start >= needed) { bootmap_start = __pa(range_start); return -1; /* done */ } /* nothing more available in this segment */ if (range_end == end) return 0; } return 0; } /** * find_memory - setup memory map * * Walk the EFI memory map and find usable memory for the system, taking * into account reserved areas. */ void find_memory (void) { unsigned long bootmap_size; reserve_memory(); /* first find highest page frame number */ max_pfn = 0; efi_memmap_walk(find_max_pfn, &max_pfn); /* how many bytes to cover all the pages */ bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; /* look for a location to hold the bootmap */ bootmap_start = ~0UL; efi_memmap_walk(find_bootmap_location, &bootmap_size); if (bootmap_start == ~0UL) panic("Cannot find %ld bytes for bootmap\n", bootmap_size); bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn); /* Free all available memory, then mark bootmem-map as being in use. */ efi_memmap_walk(filter_rsvd_memory, free_bootmem); reserve_bootmem(bootmap_start, bootmap_size); find_initrd(); } #ifdef CONFIG_SMP /** * per_cpu_init - setup per-cpu variables * * Allocate and setup per-cpu data areas. */ void * per_cpu_init (void) { void *cpu_data; int cpu; /* * get_free_pages() cannot be used before cpu_init() done. BSP * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls * get_zeroed_page(). */ if (smp_processor_id() == 0) { cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS, PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); for (cpu = 0; cpu < NR_CPUS; cpu++) { memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start); __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start; cpu_data += PERCPU_PAGE_SIZE; per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; } } return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; } #endif /* CONFIG_SMP */ static int count_pages (u64 start, u64 end, void *arg) { unsigned long *count = arg; *count += (end - start) >> PAGE_SHIFT; return 0; } #ifdef CONFIG_VIRTUAL_MEM_MAP static int count_dma_pages (u64 start, u64 end, void *arg) { unsigned long *count = arg; if (start < MAX_DMA_ADDRESS) *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT; return 0; } #endif /* * Set up the page tables. */ void paging_init (void) { unsigned long max_dma; unsigned long zones_size[MAX_NR_ZONES]; #ifdef CONFIG_VIRTUAL_MEM_MAP unsigned long zholes_size[MAX_NR_ZONES]; unsigned long max_gap; #endif /* initialize mem_map[] */ memset(zones_size, 0, sizeof(zones_size)); num_physpages = 0; efi_memmap_walk(count_pages, &num_physpages); max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; #ifdef CONFIG_VIRTUAL_MEM_MAP memset(zholes_size, 0, sizeof(zholes_size)); num_dma_physpages = 0; efi_memmap_walk(count_dma_pages, &num_dma_physpages); if (max_low_pfn < max_dma) { zones_size[ZONE_DMA] = max_low_pfn; zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages; } else { zones_size[ZONE_DMA] = max_dma; zholes_size[ZONE_DMA] = max_dma - num_dma_physpages; if (num_physpages > num_dma_physpages) { zones_size[ZONE_NORMAL] = max_low_pfn - max_dma; zholes_size[ZONE_NORMAL] = ((max_low_pfn - max_dma) - (num_physpages - num_dma_physpages)); } } max_gap = 0; efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); if (max_gap < LARGE_GAP) { vmem_map = (struct page *) 0; free_area_init_node(0, NODE_DATA(0), zones_size, 0, zholes_size); } else { unsigned long map_size; /* allocate virtual_mem_map */ map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page)); vmalloc_end -= map_size; vmem_map = (struct page *) vmalloc_end; efi_memmap_walk(create_mem_map_page_table, NULL); NODE_DATA(0)->node_mem_map = vmem_map; free_area_init_node(0, NODE_DATA(0), zones_size, 0, zholes_size); printk("Virtual mem_map starts at 0x%p\n", mem_map); } #else /* !CONFIG_VIRTUAL_MEM_MAP */ if (max_low_pfn < max_dma) zones_size[ZONE_DMA] = max_low_pfn; else { zones_size[ZONE_DMA] = max_dma; zones_size[ZONE_NORMAL] = max_low_pfn - max_dma; } free_area_init(zones_size); #endif /* !CONFIG_VIRTUAL_MEM_MAP */ zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); }