/* * Platform dependent support for SGI SN * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2000-2006 Silicon Graphics, Inc. All Rights Reserved. */ #include <linux/irq.h> #include <linux/spinlock.h> #include <linux/init.h> #include <asm/sn/addrs.h> #include <asm/sn/arch.h> #include <asm/sn/intr.h> #include <asm/sn/pcibr_provider.h> #include <asm/sn/pcibus_provider_defs.h> #include <asm/sn/pcidev.h> #include <asm/sn/shub_mmr.h> #include <asm/sn/sn_sal.h> static void force_interrupt(int irq); static void register_intr_pda(struct sn_irq_info *sn_irq_info); static void unregister_intr_pda(struct sn_irq_info *sn_irq_info); int sn_force_interrupt_flag = 1; extern int sn_ioif_inited; struct list_head **sn_irq_lh; static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */ u64 sn_intr_alloc(nasid_t local_nasid, int local_widget, struct sn_irq_info *sn_irq_info, int req_irq, nasid_t req_nasid, int req_slice) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT, (u64) SAL_INTR_ALLOC, (u64) local_nasid, (u64) local_widget, __pa(sn_irq_info), (u64) req_irq, (u64) req_nasid, (u64) req_slice); return ret_stuff.status; } void sn_intr_free(nasid_t local_nasid, int local_widget, struct sn_irq_info *sn_irq_info) { struct ia64_sal_retval ret_stuff; ret_stuff.status = 0; ret_stuff.v0 = 0; SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT, (u64) SAL_INTR_FREE, (u64) local_nasid, (u64) local_widget, (u64) sn_irq_info->irq_irq, (u64) sn_irq_info->irq_cookie, 0, 0); } static unsigned int sn_startup_irq(unsigned int irq) { return 0; } static void sn_shutdown_irq(unsigned int irq) { } static void sn_disable_irq(unsigned int irq) { } static void sn_enable_irq(unsigned int irq) { } static void sn_ack_irq(unsigned int irq) { u64 event_occurred, mask; irq = irq & 0xff; event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)); mask = event_occurred & SH_ALL_INT_MASK; HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask); __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs); move_native_irq(irq); } static void sn_end_irq(unsigned int irq) { int ivec; u64 event_occurred; ivec = irq & 0xff; if (ivec == SGI_UART_VECTOR) { event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED)); /* If the UART bit is set here, we may have received an * interrupt from the UART that the driver missed. To * make sure, we IPI ourselves to force us to look again. */ if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) { platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR, IA64_IPI_DM_INT, 0); } } __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs); if (sn_force_interrupt_flag) force_interrupt(irq); } static void sn_irq_info_free(struct rcu_head *head); struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info, nasid_t nasid, int slice) { int vector; int cpuid; #ifdef CONFIG_SMP int cpuphys; #endif int64_t bridge; int local_widget, status; nasid_t local_nasid; struct sn_irq_info *new_irq_info; struct sn_pcibus_provider *pci_provider; new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC); if (new_irq_info == NULL) return NULL; memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info)); bridge = (u64) new_irq_info->irq_bridge; if (!bridge) { kfree(new_irq_info); return NULL; /* irq is not a device interrupt */ } local_nasid = NASID_GET(bridge); if (local_nasid & 1) local_widget = TIO_SWIN_WIDGETNUM(bridge); else local_widget = SWIN_WIDGETNUM(bridge); vector = sn_irq_info->irq_irq; /* Free the old PROM new_irq_info structure */ sn_intr_free(local_nasid, local_widget, new_irq_info); unregister_intr_pda(new_irq_info); /* allocate a new PROM new_irq_info struct */ status = sn_intr_alloc(local_nasid, local_widget, new_irq_info, vector, nasid, slice); /* SAL call failed */ if (status) { kfree(new_irq_info); return NULL; } /* Update kernels new_irq_info with new target info */ cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid, new_irq_info->irq_slice); new_irq_info->irq_cpuid = cpuid; register_intr_pda(new_irq_info); pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type]; /* * If this represents a line interrupt, target it. If it's * an msi (irq_int_bit < 0), it's already targeted. */ if (new_irq_info->irq_int_bit >= 0 && pci_provider && pci_provider->target_interrupt) (pci_provider->target_interrupt)(new_irq_info); spin_lock(&sn_irq_info_lock); list_replace_rcu(&sn_irq_info->list, &new_irq_info->list); spin_unlock(&sn_irq_info_lock); call_rcu(&sn_irq_info->rcu, sn_irq_info_free); #ifdef CONFIG_SMP cpuphys = cpu_physical_id(cpuid); set_irq_affinity_info((vector & 0xff), cpuphys, 0); #endif return new_irq_info; } static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask) { struct sn_irq_info *sn_irq_info, *sn_irq_info_safe; nasid_t nasid; int slice; nasid = cpuid_to_nasid(first_cpu(mask)); slice = cpuid_to_slice(first_cpu(mask)); list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe, sn_irq_lh[irq], list) (void)sn_retarget_vector(sn_irq_info, nasid, slice); } static void sn_mask_irq(unsigned int irq) { } static void sn_unmask_irq(unsigned int irq) { } struct irq_chip irq_type_sn = { .name = "SN hub", .startup = sn_startup_irq, .shutdown = sn_shutdown_irq, .enable = sn_enable_irq, .disable = sn_disable_irq, .ack = sn_ack_irq, .end = sn_end_irq, .mask = sn_mask_irq, .unmask = sn_unmask_irq, .set_affinity = sn_set_affinity_irq }; unsigned int sn_local_vector_to_irq(u8 vector) { return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector)); } void sn_irq_init(void) { int i; irq_desc_t *base_desc = irq_desc; ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR; ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR; for (i = 0; i < NR_IRQS; i++) { if (base_desc[i].chip == &no_irq_type) { base_desc[i].chip = &irq_type_sn; } } } static void register_intr_pda(struct sn_irq_info *sn_irq_info) { int irq = sn_irq_info->irq_irq; int cpu = sn_irq_info->irq_cpuid; if (pdacpu(cpu)->sn_last_irq < irq) { pdacpu(cpu)->sn_last_irq = irq; } if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq) pdacpu(cpu)->sn_first_irq = irq; } static void unregister_intr_pda(struct sn_irq_info *sn_irq_info) { int irq = sn_irq_info->irq_irq; int cpu = sn_irq_info->irq_cpuid; struct sn_irq_info *tmp_irq_info; int i, foundmatch; rcu_read_lock(); if (pdacpu(cpu)->sn_last_irq == irq) { foundmatch = 0; for (i = pdacpu(cpu)->sn_last_irq - 1; i && !foundmatch; i--) { list_for_each_entry_rcu(tmp_irq_info, sn_irq_lh[i], list) { if (tmp_irq_info->irq_cpuid == cpu) { foundmatch = 1; break; } } } pdacpu(cpu)->sn_last_irq = i; } if (pdacpu(cpu)->sn_first_irq == irq) { foundmatch = 0; for (i = pdacpu(cpu)->sn_first_irq + 1; i < NR_IRQS && !foundmatch; i++) { list_for_each_entry_rcu(tmp_irq_info, sn_irq_lh[i], list) { if (tmp_irq_info->irq_cpuid == cpu) { foundmatch = 1; break; } } } pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i); } rcu_read_unlock(); } static void sn_irq_info_free(struct rcu_head *head) { struct sn_irq_info *sn_irq_info; sn_irq_info = container_of(head, struct sn_irq_info, rcu); kfree(sn_irq_info); } void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info) { nasid_t nasid = sn_irq_info->irq_nasid; int slice = sn_irq_info->irq_slice; int cpu = nasid_slice_to_cpuid(nasid, slice); #ifdef CONFIG_SMP int cpuphys; #endif pci_dev_get(pci_dev); sn_irq_info->irq_cpuid = cpu; sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev); /* link it into the sn_irq[irq] list */ spin_lock(&sn_irq_info_lock); list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]); reserve_irq_vector(sn_irq_info->irq_irq); spin_unlock(&sn_irq_info_lock); register_intr_pda(sn_irq_info); #ifdef CONFIG_SMP cpuphys = cpu_physical_id(cpu); set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0); #endif } void sn_irq_unfixup(struct pci_dev *pci_dev) { struct sn_irq_info *sn_irq_info; /* Only cleanup IRQ stuff if this device has a host bus context */ if (!SN_PCIDEV_BUSSOFT(pci_dev)) return; sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info; if (!sn_irq_info) return; if (!sn_irq_info->irq_irq) { kfree(sn_irq_info); return; } unregister_intr_pda(sn_irq_info); spin_lock(&sn_irq_info_lock); list_del_rcu(&sn_irq_info->list); spin_unlock(&sn_irq_info_lock); if (list_empty(sn_irq_lh[sn_irq_info->irq_irq])) free_irq_vector(sn_irq_info->irq_irq); call_rcu(&sn_irq_info->rcu, sn_irq_info_free); pci_dev_put(pci_dev); } static inline void sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info) { struct sn_pcibus_provider *pci_provider; pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type]; if (pci_provider && pci_provider->force_interrupt) (*pci_provider->force_interrupt)(sn_irq_info); } static void force_interrupt(int irq) { struct sn_irq_info *sn_irq_info; if (!sn_ioif_inited) return; rcu_read_lock(); list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list) sn_call_force_intr_provider(sn_irq_info); rcu_read_unlock(); } /* * Check for lost interrupts. If the PIC int_status reg. says that * an interrupt has been sent, but not handled, and the interrupt * is not pending in either the cpu irr regs or in the soft irr regs, * and the interrupt is not in service, then the interrupt may have * been lost. Force an interrupt on that pin. It is possible that * the interrupt is in flight, so we may generate a spurious interrupt, * but we should never miss a real lost interrupt. */ static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info) { u64 regval; struct pcidev_info *pcidev_info; struct pcibus_info *pcibus_info; /* * Bridge types attached to TIO (anything but PIC) do not need this WAR * since they do not target Shub II interrupt registers. If that * ever changes, this check needs to accomodate. */ if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC) return; pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo; if (!pcidev_info) return; pcibus_info = (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info-> pdi_pcibus_info; regval = pcireg_intr_status_get(pcibus_info); if (!ia64_get_irr(irq_to_vector(irq))) { if (!test_bit(irq, pda->sn_in_service_ivecs)) { regval &= 0xff; if (sn_irq_info->irq_int_bit & regval & sn_irq_info->irq_last_intr) { regval &= ~(sn_irq_info->irq_int_bit & regval); sn_call_force_intr_provider(sn_irq_info); } } } sn_irq_info->irq_last_intr = regval; } void sn_lb_int_war_check(void) { struct sn_irq_info *sn_irq_info; int i; if (!sn_ioif_inited || pda->sn_first_irq == 0) return; rcu_read_lock(); for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) { list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) { sn_check_intr(i, sn_irq_info); } } rcu_read_unlock(); } void __init sn_irq_lh_init(void) { int i; sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL); if (!sn_irq_lh) panic("SN PCI INIT: Failed to allocate memory for PCI init\n"); for (i = 0; i < NR_IRQS; i++) { sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL); if (!sn_irq_lh[i]) panic("SN PCI INIT: Failed IRQ memory allocation\n"); INIT_LIST_HEAD(sn_irq_lh[i]); } }