/* -*- mode: asm -*- ** ** head.S -- This file contains the initial boot code for the ** Linux/68k kernel. ** ** Copyright 1993 by Hamish Macdonald ** ** 68040 fixes by Michael Rausch ** 68060 fixes by Roman Hodek ** MMU cleanup by Randy Thelen ** Final MMU cleanup by Roman Zippel ** ** Atari support by Andreas Schwab, using ideas of Robert de Vries ** and Bjoern Brauel ** VME Support by Richard Hirst ** ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa ** 95/11/18 Richard Hirst: Added MVME166 support ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with ** Magnum- and FX-alternate ram ** 98/04/25 Phil Blundell: added HP300 support ** 1998/08/30 David Kilzer: Added support for font_desc structures ** for linux-2.1.115 ** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01) ** 2004/05/13 Kars de Jong: Finalised HP300 support ** ** This file is subject to the terms and conditions of the GNU General Public ** License. See the file README.legal in the main directory of this archive ** for more details. ** */ /* * Linux startup code. * * At this point, the boot loader has: * Disabled interrupts * Disabled caches * Put us in supervisor state. * * The kernel setup code takes the following steps: * . Raise interrupt level * . Set up initial kernel memory mapping. * . This sets up a mapping of the 4M of memory the kernel is located in. * . It also does a mapping of any initial machine specific areas. * . Enable the MMU * . Enable cache memories * . Jump to kernel startup * * Much of the file restructuring was to accomplish: * 1) Remove register dependency through-out the file. * 2) Increase use of subroutines to perform functions * 3) Increase readability of the code * * Of course, readability is a subjective issue, so it will never be * argued that that goal was accomplished. It was merely a goal. * A key way to help make code more readable is to give good * documentation. So, the first thing you will find is exaustive * write-ups on the structure of the file, and the features of the * functional subroutines. * * General Structure: * ------------------ * Without a doubt the single largest chunk of head.S is spent * mapping the kernel and I/O physical space into the logical range * for the kernel. * There are new subroutines and data structures to make MMU * support cleaner and easier to understand. * First, you will find a routine call "mmu_map" which maps * a logical to a physical region for some length given a cache * type on behalf of the caller. This routine makes writing the * actual per-machine specific code very simple. * A central part of the code, but not a subroutine in itself, * is the mmu_init code which is broken down into mapping the kernel * (the same for all machines) and mapping machine-specific I/O * regions. * Also, there will be a description of engaging the MMU and * caches. * You will notice that there is a chunk of code which * can emit the entire MMU mapping of the machine. This is present * only in debug modes and can be very helpful. * Further, there is a new console driver in head.S that is * also only engaged in debug mode. Currently, it's only supported * on the Macintosh class of machines. However, it is hoped that * others will plug-in support for specific machines. * * ###################################################################### * * mmu_map * ------- * mmu_map was written for two key reasons. First, it was clear * that it was very difficult to read the previous code for mapping * regions of memory. Second, the Macintosh required such extensive * memory allocations that it didn't make sense to propagate the * existing code any further. * mmu_map requires some parameters: * * mmu_map (logical, physical, length, cache_type) * * While this essentially describes the function in the abstract, you'll * find more indepth description of other parameters at the implementation site. * * mmu_get_root_table_entry * ------------------------ * mmu_get_ptr_table_entry * ----------------------- * mmu_get_page_table_entry * ------------------------ * * These routines are used by other mmu routines to get a pointer into * a table, if necessary a new table is allocated. These routines are working * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root * table needs of course only to be allocated once in mmu_get_root_table_entry, * so that here also some mmu specific initialization is done. The second page * at the start of the kernel (the first page is unmapped later) is used for * the kernel_pg_dir. It must be at a position known at link time (as it's used * to initialize the init task struct) and since it needs special cache * settings, it's the easiest to use this page, the rest of the page is used * for further pointer tables. * mmu_get_page_table_entry allocates always a whole page for page tables, this * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense * to manage page tables in smaller pieces as nearly all mappings have that * size. * * ###################################################################### * * * ###################################################################### * * mmu_engage * ---------- * Thanks to a small helping routine enabling the mmu got quite simple * and there is only one way left. mmu_engage makes a complete a new mapping * that only includes the absolute necessary to be able to jump to the final * postion and to restore the original mapping. * As this code doesn't need a transparent translation register anymore this * means all registers are free to be used by machines that needs them for * other purposes. * * ###################################################################### * * mmu_print * --------- * This algorithm will print out the page tables of the system as * appropriate for an 030 or an 040. This is useful for debugging purposes * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses. * * ###################################################################### * * console_init * ------------ * The console is also able to be turned off. The console in head.S * is specifically for debugging and can be very useful. It is surrounded by * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good * kernels. It's basic algorithm is to determine the size of the screen * (in height/width and bit depth) and then use that information for * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for * debugging so I can see more good data. But it was trivial to add support * for both fonts, so I included it. * Also, the algorithm for plotting pixels is abstracted so that in * theory other platforms could add support for different kinds of frame * buffers. This could be very useful. * * console_put_penguin * ------------------- * An important part of any Linux bring up is the penguin and there's * nothing like getting the Penguin on the screen! This algorithm will work * on any machine for which there is a console_plot_pixel. * * console_scroll * -------------- * My hope is that the scroll algorithm does the right thing on the * various platforms, but it wouldn't be hard to add the test conditions * and new code if it doesn't. * * console_putc * ------------- * * ###################################################################### * * Register usage has greatly simplified within head.S. Every subroutine * saves and restores all registers that it modifies (except it returns a * value in there of course). So the only register that needs to be initialized * is the stack pointer. * All other init code and data is now placed in the init section, so it will * be automatically freed at the end of the kernel initialization. * * ###################################################################### * * options * ------- * There are many options available in a build of this file. I've * taken the time to describe them here to save you the time of searching * for them and trying to understand what they mean. * * CONFIG_xxx: These are the obvious machine configuration defines created * during configuration. These are defined in include/linux/autoconf.h. * * CONSOLE: There is support for head.S console in this file. This * console can talk to a Mac frame buffer, but could easily be extrapolated * to extend it to support other platforms. * * TEST_MMU: This is a test harness for running on any given machine but * getting an MMU dump for another class of machine. The classes of machines * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.) * and any of the models (030, 040, 060, etc.). * * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed * When head.S boots on Atari, Amiga, Macintosh, and VME * machines. At that point the underlying logic will be * believed to be solid enough to be trusted, and TEST_MMU * can be dropped. Do note that that will clean up the * head.S code significantly as large blocks of #if/#else * clauses can be removed. * * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into * determing why devices don't appear to work. A test case was to remove * the cacheability of the kernel bits. * * MMU_PRINT: There is a routine built into head.S that can display the * MMU data structures. It outputs its result through the serial_putc * interface. So where ever that winds up driving data, that's where the * mmu struct will appear. On the Macintosh that's typically the console. * * SERIAL_DEBUG: There are a series of putc() macro statements * scattered through out the code to give progress of status to the * person sitting at the console. This constant determines whether those * are used. * * DEBUG: This is the standard DEBUG flag that can be set for building * the kernel. It has the effect adding additional tests into * the code. * * FONT_6x11: * FONT_8x8: * FONT_8x16: * In theory these could be determined at run time or handed * over by the booter. But, let's be real, it's a fine hard * coded value. (But, you will notice the code is run-time * flexible!) A pointer to the font's struct font_desc * is kept locally in Lconsole_font. It is used to determine * font size information dynamically. * * Atari constants: * USE_PRINTER: Use the printer port for serial debug. * USE_SCC_B: Use the SCC port A (Serial2) for serial debug. * USE_SCC_A: Use the SCC port B (Modem2) for serial debug. * USE_MFP: Use the ST-MFP port (Modem1) for serial debug. * * Macintosh constants: * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh. * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug. * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default). */ #include <linux/linkage.h> #include <linux/init.h> #include <asm/bootinfo.h> #include <asm/setup.h> #include <asm/entry.h> #include <asm/pgtable.h> #include <asm/page.h> #include <asm/asm-offsets.h> #ifdef CONFIG_MAC #include <asm/machw.h> /* * Macintosh console support */ #ifdef CONFIG_FRAMEBUFFER_CONSOLE #define CONSOLE #define CONSOLE_PENGUIN #endif /* * Macintosh serial debug support; outputs boot info to the printer * and/or modem serial ports */ #undef MAC_SERIAL_DEBUG /* * Macintosh serial debug port selection; define one or both; * requires MAC_SERIAL_DEBUG to be defined */ #define MAC_USE_SCC_A /* Macintosh modem serial port */ #define MAC_USE_SCC_B /* Macintosh printer serial port */ #endif /* CONFIG_MAC */ #undef MMU_PRINT #undef MMU_NOCACHE_KERNEL #define SERIAL_DEBUG #undef DEBUG /* * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8. * The 8x8 font is harder to read but fits more on the screen. */ #define FONT_8x8 /* default */ /* #define FONT_8x16 */ /* 2nd choice */ /* #define FONT_6x11 */ /* 3rd choice */ .globl kernel_pg_dir .globl availmem .globl m68k_pgtable_cachemode .globl m68k_supervisor_cachemode #ifdef CONFIG_MVME16x .globl mvme_bdid #endif #ifdef CONFIG_Q40 .globl q40_mem_cptr #endif CPUTYPE_040 = 1 /* indicates an 040 */ CPUTYPE_060 = 2 /* indicates an 060 */ CPUTYPE_0460 = 3 /* if either above are set, this is set */ CPUTYPE_020 = 4 /* indicates an 020 */ /* Translation control register */ TC_ENABLE = 0x8000 TC_PAGE8K = 0x4000 TC_PAGE4K = 0x0000 /* Transparent translation registers */ TTR_ENABLE = 0x8000 /* enable transparent translation */ TTR_ANYMODE = 0x4000 /* user and kernel mode access */ TTR_KERNELMODE = 0x2000 /* only kernel mode access */ TTR_USERMODE = 0x0000 /* only user mode access */ TTR_CI = 0x0400 /* inhibit cache */ TTR_RW = 0x0200 /* read/write mode */ TTR_RWM = 0x0100 /* read/write mask */ TTR_FCB2 = 0x0040 /* function code base bit 2 */ TTR_FCB1 = 0x0020 /* function code base bit 1 */ TTR_FCB0 = 0x0010 /* function code base bit 0 */ TTR_FCM2 = 0x0004 /* function code mask bit 2 */ TTR_FCM1 = 0x0002 /* function code mask bit 1 */ TTR_FCM0 = 0x0001 /* function code mask bit 0 */ /* Cache Control registers */ CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */ CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */ CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */ CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */ CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */ CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */ CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */ CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */ CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */ CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */ CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */ CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */ CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */ CC3_CLR_D = 0x00000800 /* clear data cache (68030) */ CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */ CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */ CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */ CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */ CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */ CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */ CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */ CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */ /* Miscellaneous definitions */ PAGESIZE = 4096 PAGESHIFT = 12 ROOT_TABLE_SIZE = 128 PTR_TABLE_SIZE = 128 PAGE_TABLE_SIZE = 64 ROOT_INDEX_SHIFT = 25 PTR_INDEX_SHIFT = 18 PAGE_INDEX_SHIFT = 12 #ifdef DEBUG /* When debugging use readable names for labels */ #ifdef __STDC__ #define L(name) .head.S.##name #else #define L(name) .head.S./**/name #endif #else #ifdef __STDC__ #define L(name) .L##name #else #define L(name) .L/**/name #endif #endif /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */ #ifndef __INITDATA #define __INITDATA .data #define __FINIT .previous #endif /* Several macros to make the writing of subroutines easier: * - func_start marks the beginning of the routine which setups the frame * register and saves the registers, it also defines another macro * to automatically restore the registers again. * - func_return marks the end of the routine and simply calls the prepared * macro to restore registers and jump back to the caller. * - func_define generates another macro to automatically put arguments * onto the stack call the subroutine and cleanup the stack again. */ /* Within subroutines these macros can be used to access the arguments * on the stack. With STACK some allocated memory on the stack can be * accessed and ARG0 points to the return address (used by mmu_engage). */ #define STACK %a6@(stackstart) #define ARG0 %a6@(4) #define ARG1 %a6@(8) #define ARG2 %a6@(12) #define ARG3 %a6@(16) #define ARG4 %a6@(20) .macro func_start name,saveregs,stack=0 L(\name): linkw %a6,#-\stack moveml \saveregs,%sp@- .set stackstart,-\stack .macro func_return_\name moveml %sp@+,\saveregs unlk %a6 rts .endm .endm .macro func_return name func_return_\name .endm .macro func_call name jbsr L(\name) .endm .macro move_stack nr,arg1,arg2,arg3,arg4 .if \nr move_stack "(\nr-1)",\arg2,\arg3,\arg4 movel \arg1,%sp@- .endif .endm .macro func_define name,nr=0 .macro \name arg1,arg2,arg3,arg4 move_stack \nr,\arg1,\arg2,\arg3,\arg4 func_call \name .if \nr lea %sp@(\nr*4),%sp .endif .endm .endm func_define mmu_map,4 func_define mmu_map_tt,4 func_define mmu_fixup_page_mmu_cache,1 func_define mmu_temp_map,2 func_define mmu_engage func_define mmu_get_root_table_entry,1 func_define mmu_get_ptr_table_entry,2 func_define mmu_get_page_table_entry,2 func_define mmu_print func_define get_new_page #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) func_define set_leds #endif .macro mmu_map_eq arg1,arg2,arg3 mmu_map \arg1,\arg1,\arg2,\arg3 .endm .macro get_bi_record record pea \record func_call get_bi_record addql #4,%sp .endm func_define serial_putc,1 func_define console_putc,1 func_define console_init func_define console_put_stats func_define console_put_penguin func_define console_plot_pixel,3 func_define console_scroll .macro putc ch #if defined(CONSOLE) || defined(SERIAL_DEBUG) pea \ch #endif #ifdef CONSOLE func_call console_putc #endif #ifdef SERIAL_DEBUG func_call serial_putc #endif #if defined(CONSOLE) || defined(SERIAL_DEBUG) addql #4,%sp #endif .endm .macro dputc ch #ifdef DEBUG putc \ch #endif .endm func_define putn,1 .macro dputn nr #ifdef DEBUG putn \nr #endif .endm .macro puts string #if defined(CONSOLE) || defined(SERIAL_DEBUG) __INITDATA .Lstr\@: .string "\string" __FINIT pea %pc@(.Lstr\@) func_call puts addql #4,%sp #endif .endm .macro dputs string #ifdef DEBUG puts "\string" #endif .endm #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \ jeq 42f; \ cmpl &MACH_APOLLO,%pc@(m68k_machtype); \ jne lab ;\ 42:\ #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab /* On the HP300 we use the on-board LEDs for debug output before the console is running. Writing a 1 bit turns the corresponding LED _off_ - on the 340 bit 7 is towards the back panel of the machine. */ .macro leds mask #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) hasnt_leds(.Lled\@) pea \mask func_call set_leds addql #4,%sp .Lled\@: #endif .endm .section ".text.head","ax" ENTRY(_stext) /* * Version numbers of the bootinfo interface * The area from _stext to _start will later be used as kernel pointer table */ bras 1f /* Jump over bootinfo version numbers */ .long BOOTINFOV_MAGIC .long MACH_AMIGA, AMIGA_BOOTI_VERSION .long MACH_ATARI, ATARI_BOOTI_VERSION .long MACH_MVME147, MVME147_BOOTI_VERSION .long MACH_MVME16x, MVME16x_BOOTI_VERSION .long MACH_BVME6000, BVME6000_BOOTI_VERSION .long MACH_MAC, MAC_BOOTI_VERSION .long MACH_Q40, Q40_BOOTI_VERSION .long MACH_HP300, HP300_BOOTI_VERSION .long 0 1: jra __start .equ kernel_pg_dir,_stext .equ .,_stext+PAGESIZE ENTRY(_start) jra __start __INIT ENTRY(__start) /* * Setup initial stack pointer */ lea %pc@(_stext),%sp /* * Record the CPU and machine type. */ get_bi_record BI_MACHTYPE lea %pc@(m68k_machtype),%a1 movel %a0@,%a1@ get_bi_record BI_FPUTYPE lea %pc@(m68k_fputype),%a1 movel %a0@,%a1@ get_bi_record BI_MMUTYPE lea %pc@(m68k_mmutype),%a1 movel %a0@,%a1@ get_bi_record BI_CPUTYPE lea %pc@(m68k_cputype),%a1 movel %a0@,%a1@ leds 0x1 #ifdef CONFIG_MAC /* * For Macintosh, we need to determine the display parameters early (at least * while debugging it). */ is_not_mac(L(test_notmac)) get_bi_record BI_MAC_VADDR lea %pc@(L(mac_videobase)),%a1 movel %a0@,%a1@ get_bi_record BI_MAC_VDEPTH lea %pc@(L(mac_videodepth)),%a1 movel %a0@,%a1@ get_bi_record BI_MAC_VDIM lea %pc@(L(mac_dimensions)),%a1 movel %a0@,%a1@ get_bi_record BI_MAC_VROW lea %pc@(L(mac_rowbytes)),%a1 movel %a0@,%a1@ #ifdef MAC_SERIAL_DEBUG get_bi_record BI_MAC_SCCBASE lea %pc@(L(mac_sccbase)),%a1 movel %a0@,%a1@ #endif /* MAC_SERIAL_DEBUG */ #if 0 /* * Clear the screen */ lea %pc@(L(mac_videobase)),%a0 movel %a0@,%a1 lea %pc@(L(mac_dimensions)),%a0 movel %a0@,%d1 swap %d1 /* #rows is high bytes */ andl #0xFFFF,%d1 /* rows */ subl #10,%d1 lea %pc@(L(mac_rowbytes)),%a0 loopy2: movel %a0@,%d0 subql #1,%d0 loopx2: moveb #0x55, %a1@+ dbra %d0,loopx2 dbra %d1,loopy2 #endif L(test_notmac): #endif /* CONFIG_MAC */ /* * There are ultimately two pieces of information we want for all kinds of * processors CpuType and CacheBits. The CPUTYPE was passed in from booter * and is converted here from a booter type definition to a separate bit * number which allows for the standard is_0x0 macro tests. */ movel %pc@(m68k_cputype),%d0 /* * Assume it's an 030 */ clrl %d1 /* * Test the BootInfo cputype for 060 */ btst #CPUB_68060,%d0 jeq 1f bset #CPUTYPE_060,%d1 bset #CPUTYPE_0460,%d1 jra 3f 1: /* * Test the BootInfo cputype for 040 */ btst #CPUB_68040,%d0 jeq 2f bset #CPUTYPE_040,%d1 bset #CPUTYPE_0460,%d1 jra 3f 2: /* * Test the BootInfo cputype for 020 */ btst #CPUB_68020,%d0 jeq 3f bset #CPUTYPE_020,%d1 jra 3f 3: /* * Record the cpu type */ lea %pc@(L(cputype)),%a0 movel %d1,%a0@ /* * NOTE: * * Now the macros are valid: * is_040_or_060 * is_not_040_or_060 * is_040 * is_060 * is_not_060 */ /* * Determine the cache mode for pages holding MMU tables * and for supervisor mode, unused for '020 and '030 */ clrl %d0 clrl %d1 is_not_040_or_060(L(save_cachetype)) /* * '040 or '060 * d1 := cacheable write-through * NOTE: The 68040 manual strongly recommends non-cached for MMU tables, * but we have been using write-through since at least 2.0.29 so I * guess it is OK. */ #ifdef CONFIG_060_WRITETHROUGH /* * If this is a 68060 board using drivers with cache coherency * problems, then supervisor memory accesses need to be write-through * also; otherwise, we want copyback. */ is_not_060(1f) movel #_PAGE_CACHE040W,%d0 jra L(save_cachetype) #endif /* CONFIG_060_WRITETHROUGH */ 1: movew #_PAGE_CACHE040,%d0 movel #_PAGE_CACHE040W,%d1 L(save_cachetype): /* Save cache mode for supervisor mode and page tables */ lea %pc@(m68k_supervisor_cachemode),%a0 movel %d0,%a0@ lea %pc@(m68k_pgtable_cachemode),%a0 movel %d1,%a0@ /* * raise interrupt level */ movew #0x2700,%sr /* If running on an Atari, determine the I/O base of the serial port and test if we are running on a Medusa or Hades. This test is necessary here, because on the Hades the serial port is only accessible in the high I/O memory area. The test whether it is a Medusa is done by writing to the byte at phys. 0x0. This should result in a bus error on all other machines. ...should, but doesn't. The Afterburner040 for the Falcon has the same behaviour (0x0..0x7 are no ROM shadow). So we have to do another test to distinguish Medusa and AB040. This is a read attempt for 0x00ff82fe phys. that should bus error on a Falcon (+AB040), but is in the range where the Medusa always asserts DTACK. The test for the Hades is done by reading address 0xb0000000. This should give a bus error on the Medusa. */ #ifdef CONFIG_ATARI is_not_atari(L(notypetest)) /* get special machine type (Medusa/Hades/AB40) */ moveq #0,%d3 /* default if tag doesn't exist */ get_bi_record BI_ATARI_MCH_TYPE tstl %d0 jbmi 1f movel %a0@,%d3 lea %pc@(atari_mch_type),%a0 movel %d3,%a0@ 1: /* On the Hades, the iobase must be set up before opening the * serial port. There are no I/O regs at 0x00ffxxxx at all. */ moveq #0,%d0 cmpl #ATARI_MACH_HADES,%d3 jbne 1f movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */ 1: lea %pc@(L(iobase)),%a0 movel %d0,%a0@ L(notypetest): #endif #ifdef CONFIG_VME is_mvme147(L(getvmetype)) is_bvme6000(L(getvmetype)) is_not_mvme16x(L(gvtdone)) /* See if the loader has specified the BI_VME_TYPE tag. Recent * versions of VMELILO and TFTPLILO do this. We have to do this * early so we know how to handle console output. If the tag * doesn't exist then we use the Bug for output on MVME16x. */ L(getvmetype): get_bi_record BI_VME_TYPE tstl %d0 jbmi 1f movel %a0@,%d3 lea %pc@(vme_brdtype),%a0 movel %d3,%a0@ 1: #ifdef CONFIG_MVME16x is_not_mvme16x(L(gvtdone)) /* Need to get the BRD_ID info to differentiate between 162, 167, * etc. This is available as a BI_VME_BRDINFO tag with later * versions of VMELILO and TFTPLILO, otherwise we call the Bug. */ get_bi_record BI_VME_BRDINFO tstl %d0 jpl 1f /* Get pointer to board ID data from Bug */ movel %d2,%sp@- trap #15 .word 0x70 /* trap 0x70 - .BRD_ID */ movel %sp@+,%a0 1: lea %pc@(mvme_bdid),%a1 /* Structure is 32 bytes long */ movel %a0@+,%a1@+ movel %a0@+,%a1@+ movel %a0@+,%a1@+ movel %a0@+,%a1@+ movel %a0@+,%a1@+ movel %a0@+,%a1@+ movel %a0@+,%a1@+ movel %a0@+,%a1@+ #endif L(gvtdone): #endif #ifdef CONFIG_HP300 is_not_hp300(L(nothp)) /* Get the address of the UART for serial debugging */ get_bi_record BI_HP300_UART_ADDR tstl %d0 jbmi 1f movel %a0@,%d3 lea %pc@(L(uartbase)),%a0 movel %d3,%a0@ get_bi_record BI_HP300_UART_SCODE tstl %d0 jbmi 1f movel %a0@,%d3 lea %pc@(L(uart_scode)),%a0 movel %d3,%a0@ 1: L(nothp): #endif /* * Initialize serial port */ jbsr L(serial_init) /* * Initialize console */ #ifdef CONFIG_MAC is_not_mac(L(nocon)) #ifdef CONSOLE console_init #ifdef CONSOLE_PENGUIN console_put_penguin #endif /* CONSOLE_PENGUIN */ console_put_stats #endif /* CONSOLE */ L(nocon): #endif /* CONFIG_MAC */ putc '\n' putc 'A' leds 0x2 dputn %pc@(L(cputype)) dputn %pc@(m68k_supervisor_cachemode) dputn %pc@(m68k_pgtable_cachemode) dputc '\n' /* * Save physical start address of kernel */ lea %pc@(L(phys_kernel_start)),%a0 lea %pc@(_stext),%a1 subl #_stext,%a1 addl #PAGE_OFFSET,%a1 movel %a1,%a0@ putc 'B' leds 0x4 /* * mmu_init * * This block of code does what's necessary to map in the various kinds * of machines for execution of Linux. * First map the first 4 MB of kernel code & data */ mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\ %pc@(m68k_supervisor_cachemode) putc 'C' #ifdef CONFIG_AMIGA L(mmu_init_amiga): is_not_amiga(L(mmu_init_not_amiga)) /* * mmu_init_amiga */ putc 'D' is_not_040_or_060(1f) /* * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000 */ mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S /* * Map the Zorro III I/O space with transparent translation * for frame buffer memory etc. */ mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S jbra L(mmu_init_done) 1: /* * 030: Map the 32Meg range physical 0x0 upto logical 0x8000.0000 */ mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030 jbra L(mmu_init_done) L(mmu_init_not_amiga): #endif #ifdef CONFIG_ATARI L(mmu_init_atari): is_not_atari(L(mmu_init_not_atari)) putc 'E' /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping the last 16 MB of virtual address space to the first 16 MB (i.e. 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is needed. I/O ranges are marked non-cachable. For the Medusa it is better to map the I/O region transparently (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are accessible only in the high area. On the Hades all I/O registers are only accessible in the high area. */ /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */ moveq #0,%d0 movel %pc@(atari_mch_type),%d3 cmpl #ATARI_MACH_MEDUSA,%d3 jbeq 2f cmpl #ATARI_MACH_HADES,%d3 jbne 1f 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */ 1: movel %d0,%d3 is_040_or_060(L(spata68040)) /* Map everything non-cacheable, though not all parts really * need to disable caches (crucial only for 0xff8000..0xffffff * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder * isn't really used, except for sometimes peeking into the * ROMs (mirror at phys. 0x0), so caching isn't necessary for * this. */ mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030 jbra L(mmu_init_done) L(spata68040): mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S jbra L(mmu_init_done) L(mmu_init_not_atari): #endif #ifdef CONFIG_Q40 is_not_q40(L(notq40)) /* * add transparent mapping for 0xff00 0000 - 0xffff ffff * non-cached serialized etc.. * this includes master chip, DAC, RTC and ISA ports * 0xfe000000-0xfeffffff is for screen and ROM */ putc 'Q' mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S jbra L(mmu_init_done) L(notq40): #endif #ifdef CONFIG_HP300 is_not_hp300(L(nothp300)) /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx) * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx). * The ROM mapping is needed because the LEDs are mapped there too. */ is_040(1f) /* * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000 */ mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030 jbra L(mmu_init_done) 1: /* * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000 */ mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S jbra L(mmu_init_done) L(nothp300): #endif /* CONFIG_HP300 */ #ifdef CONFIG_MVME147 is_not_mvme147(L(not147)) /* * On MVME147 we have already created kernel page tables for * 4MB of RAM at address 0, so now need to do a transparent * mapping of the top of memory space. Make it 0.5GByte for now, * so we can access on-board i/o areas. */ mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030 jbra L(mmu_init_done) L(not147): #endif /* CONFIG_MVME147 */ #ifdef CONFIG_MVME16x is_not_mvme16x(L(not16x)) /* * On MVME16x we have already created kernel page tables for * 4MB of RAM at address 0, so now need to do a transparent * mapping of the top of memory space. Make it 0.5GByte for now. * Supervisor only access, so transparent mapping doesn't * clash with User code virtual address space. * this covers IO devices, PROM and SRAM. The PROM and SRAM * mapping is needed to allow 167Bug to run. * IO is in the range 0xfff00000 to 0xfffeffff. * PROM is 0xff800000->0xffbfffff and SRAM is * 0xffe00000->0xffe1ffff. */ mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S jbra L(mmu_init_done) L(not16x): #endif /* CONFIG_MVME162 | CONFIG_MVME167 */ #ifdef CONFIG_BVME6000 is_not_bvme6000(L(not6000)) /* * On BVME6000 we have already created kernel page tables for * 4MB of RAM at address 0, so now need to do a transparent * mapping of the top of memory space. Make it 0.5GByte for now, * so we can access on-board i/o areas. * Supervisor only access, so transparent mapping doesn't * clash with User code virtual address space. */ mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S jbra L(mmu_init_done) L(not6000): #endif /* CONFIG_BVME6000 */ /* * mmu_init_mac * * The Macintosh mappings are less clear. * * Even as of this writing, it is unclear how the * Macintosh mappings will be done. However, as * the first author of this code I'm proposing the * following model: * * Map the kernel (that's already done), * Map the I/O (on most machines that's the * 0x5000.0000 ... 0x5300.0000 range, * Map the video frame buffer using as few pages * as absolutely (this requirement mostly stems from * the fact that when the frame buffer is at * 0x0000.0000 then we know there is valid RAM just * above the screen that we don't want to waste!). * * By the way, if the frame buffer is at 0x0000.0000 * then the Macintosh is known as an RBV based Mac. * * By the way 2, the code currently maps in a bunch of * regions. But I'd like to cut that out. (And move most * of the mappings up into the kernel proper ... or only * map what's necessary.) */ #ifdef CONFIG_MAC L(mmu_init_mac): is_not_mac(L(mmu_init_not_mac)) putc 'F' is_not_040_or_060(1f) moveq #_PAGE_NOCACHE_S,%d3 jbra 2f 1: moveq #_PAGE_NOCACHE030,%d3 2: /* * Mac Note: screen address of logical 0xF000.0000 -> <screen physical> * we simply map the 4MB that contains the videomem */ movel #VIDEOMEMMASK,%d0 andl %pc@(L(mac_videobase)),%d0 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */ mmu_map_eq #0x40000000,#0x02000000,%d3 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */ mmu_map_eq #0x50000000,#0x03000000,%d3 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */ mmu_map_tt #1,#0xf8000000,#0x08000000,%d3 jbra L(mmu_init_done) L(mmu_init_not_mac): #endif #ifdef CONFIG_SUN3X is_not_sun3x(L(notsun3x)) /* oh, the pain.. We're gonna want the prom code after * starting the MMU, so we copy the mappings, translating * from 8k -> 4k pages as we go. */ /* copy maps from 0xfee00000 to 0xff000000 */ movel #0xfee00000, %d0 moveq #ROOT_INDEX_SHIFT, %d1 lsrl %d1,%d0 mmu_get_root_table_entry %d0 movel #0xfee00000, %d0 moveq #PTR_INDEX_SHIFT, %d1 lsrl %d1,%d0 andl #PTR_TABLE_SIZE-1, %d0 mmu_get_ptr_table_entry %a0,%d0 movel #0xfee00000, %d0 moveq #PAGE_INDEX_SHIFT, %d1 lsrl %d1,%d0 andl #PAGE_TABLE_SIZE-1, %d0 mmu_get_page_table_entry %a0,%d0 /* this is where the prom page table lives */ movel 0xfefe00d4, %a1 movel %a1@, %a1 movel #((0x200000 >> 13)-1), %d1 1: movel %a1@+, %d3 movel %d3,%a0@+ addl #0x1000,%d3 movel %d3,%a0@+ dbra %d1,1b /* setup tt1 for I/O */ mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S jbra L(mmu_init_done) L(notsun3x): #endif #ifdef CONFIG_APOLLO is_not_apollo(L(notapollo)) putc 'P' mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 L(notapollo): jbra L(mmu_init_done) #endif L(mmu_init_done): putc 'G' leds 0x8 /* * mmu_fixup * * On the 040 class machines, all pages that are used for the * mmu have to be fixed up. According to Motorola, pages holding mmu * tables should be non-cacheable on a '040 and write-through on a * '060. But analysis of the reasons for this, and practical * experience, showed that write-through also works on a '040. * * Allocated memory so far goes from kernel_end to memory_start that * is used for all kind of tables, for that the cache attributes * are now fixed. */ L(mmu_fixup): is_not_040_or_060(L(mmu_fixup_done)) #ifdef MMU_NOCACHE_KERNEL jbra L(mmu_fixup_done) #endif /* first fix the page at the start of the kernel, that * contains also kernel_pg_dir. */ movel %pc@(L(phys_kernel_start)),%d0 subl #PAGE_OFFSET,%d0 lea %pc@(_stext),%a0 subl %d0,%a0 mmu_fixup_page_mmu_cache %a0 movel %pc@(L(kernel_end)),%a0 subl %d0,%a0 movel %pc@(L(memory_start)),%a1 subl %d0,%a1 bra 2f 1: mmu_fixup_page_mmu_cache %a0 addw #PAGESIZE,%a0 2: cmpl %a0,%a1 jgt 1b L(mmu_fixup_done): #ifdef MMU_PRINT mmu_print #endif /* * mmu_engage * * This chunk of code performs the gruesome task of engaging the MMU. * The reason its gruesome is because when the MMU becomes engaged it * maps logical addresses to physical addresses. The Program Counter * register is then passed through the MMU before the next instruction * is fetched (the instruction following the engage MMU instruction). * This may mean one of two things: * 1. The Program Counter falls within the logical address space of * the kernel of which there are two sub-possibilities: * A. The PC maps to the correct instruction (logical PC == physical * code location), or * B. The PC does not map through and the processor will read some * data (or instruction) which is not the logically next instr. * As you can imagine, A is good and B is bad. * Alternatively, * 2. The Program Counter does not map through the MMU. The processor * will take a Bus Error. * Clearly, 2 is bad. * It doesn't take a wiz kid to figure you want 1.A. * This code creates that possibility. * There are two possible 1.A. states (we now ignore the other above states): * A. The kernel is located at physical memory addressed the same as * the logical memory for the kernel, i.e., 0x01000. * B. The kernel is located some where else. e.g., 0x0400.0000 * * Under some conditions the Macintosh can look like A or B. * [A friend and I once noted that Apple hardware engineers should be * wacked twice each day: once when they show up at work (as in, Whack!, * "This is for the screwy hardware we know you're going to design today."), * and also at the end of the day (as in, Whack! "I don't know what * you designed today, but I'm sure it wasn't good."). -- rst] * * This code works on the following premise: * If the kernel start (%d5) is within the first 16 Meg of RAM, * then create a mapping for the kernel at logical 0x8000.0000 to * the physical location of the pc. And, create a transparent * translation register for the first 16 Meg. Then, after the MMU * is engaged, the PC can be moved up into the 0x8000.0000 range * and then the transparent translation can be turned off and then * the PC can jump to the correct logical location and it will be * home (finally). This is essentially the code that the Amiga used * to use. Now, it's generalized for all processors. Which means * that a fresh (but temporary) mapping has to be created. The mapping * is made in page 0 (an as of yet unused location -- except for the * stack!). This temporary mapping will only require 1 pointer table * and a single page table (it can map 256K). * * OK, alternatively, imagine that the Program Counter is not within * the first 16 Meg. Then, just use Transparent Translation registers * to do the right thing. * * Last, if _start is already at 0x01000, then there's nothing special * to do (in other words, in a degenerate case of the first case above, * do nothing). * * Let's do it. * * */ putc 'H' mmu_engage /* * After this point no new memory is allocated and * the start of available memory is stored in availmem. * (The bootmem allocator requires now the physicall address.) */ movel L(memory_start),availmem #ifdef CONFIG_AMIGA is_not_amiga(1f) /* fixup the Amiga custom register location before printing */ clrl L(custom) 1: #endif #ifdef CONFIG_ATARI is_not_atari(1f) /* fixup the Atari iobase register location before printing */ movel #0xff000000,L(iobase) 1: #endif #ifdef CONFIG_MAC is_not_mac(1f) movel #~VIDEOMEMMASK,%d0 andl L(mac_videobase),%d0 addl #VIDEOMEMBASE,%d0 movel %d0,L(mac_videobase) #if defined(CONSOLE) movel %pc@(L(phys_kernel_start)),%d0 subl #PAGE_OFFSET,%d0 subl %d0,L(console_font) subl %d0,L(console_font_data) #endif #ifdef MAC_SERIAL_DEBUG orl #0x50000000,L(mac_sccbase) #endif 1: #endif #ifdef CONFIG_HP300 is_not_hp300(1f) /* * Fix up the iobase register to point to the new location of the LEDs. */ movel #0xf0000000,L(iobase) /* * Energise the FPU and caches. */ is_040(1f) movel #0x60,0xf05f400c jbra 2f /* * 040: slightly different, apparently. */ 1: movew #0,0xf05f400e movew #0x64,0xf05f400e 2: #endif #ifdef CONFIG_SUN3X is_not_sun3x(1f) /* enable copro */ oriw #0x4000,0x61000000 1: #endif #ifdef CONFIG_APOLLO is_not_apollo(1f) /* * Fix up the iobase before printing */ movel #0x80000000,L(iobase) 1: #endif putc 'I' leds 0x10 /* * Enable caches */ is_not_040_or_060(L(cache_not_680460)) L(cache680460): .chip 68040 nop cpusha %bc nop is_060(L(cache68060)) movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0 /* MMU stuff works in copyback mode now, so enable the cache */ movec %d0,%cacr jra L(cache_done) L(cache68060): movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0 /* MMU stuff works in copyback mode now, so enable the cache */ movec %d0,%cacr /* enable superscalar dispatch in PCR */ moveq #1,%d0 .chip 68060 movec %d0,%pcr jbra L(cache_done) L(cache_not_680460): L(cache68030): .chip 68030 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0 movec %d0,%cacr jra L(cache_done) .chip 68k L(cache_done): putc 'J' /* * Setup initial stack pointer */ lea init_task,%curptr lea init_thread_union+THREAD_SIZE,%sp putc 'K' subl %a6,%a6 /* clear a6 for gdb */ /* * The new 64bit printf support requires an early exception initialization. */ jbsr base_trap_init /* jump to the kernel start */ putc '\n' leds 0x55 jbsr start_kernel /* * Find a tag record in the bootinfo structure * The bootinfo structure is located right after the kernel bss * Returns: d0: size (-1 if not found) * a0: data pointer (end-of-records if not found) */ func_start get_bi_record,%d1 movel ARG1,%d0 lea %pc@(_end),%a0 1: tstw %a0@(BIR_TAG) jeq 3f cmpw %a0@(BIR_TAG),%d0 jeq 2f addw %a0@(BIR_SIZE),%a0 jra 1b 2: moveq #0,%d0 movew %a0@(BIR_SIZE),%d0 lea %a0@(BIR_DATA),%a0 jra 4f 3: moveq #-1,%d0 lea %a0@(BIR_SIZE),%a0 4: func_return get_bi_record /* * MMU Initialization Begins Here * * The structure of the MMU tables on the 68k machines * is thus: * Root Table * Logical addresses are translated through * a hierarchical translation mechanism where the high-order * seven bits of the logical address (LA) are used as an * index into the "root table." Each entry in the root * table has a bit which specifies if it's a valid pointer to a * pointer table. Each entry defines a 32KMeg range of memory. * If an entry is invalid then that logical range of 32M is * invalid and references to that range of memory (when the MMU * is enabled) will fault. If the entry is valid, then it does * one of two things. On 040/060 class machines, it points to * a pointer table which then describes more finely the memory * within that 32M range. On 020/030 class machines, a technique * called "early terminating descriptors" are used. This technique * allows an entire 32Meg to be described by a single entry in the * root table. Thus, this entry in the root table, contains the * physical address of the memory or I/O at the logical address * which the entry represents and it also contains the necessary * cache bits for this region. * * Pointer Tables * Per the Root Table, there will be one or more * pointer tables. Each pointer table defines a 32M range. * Not all of the 32M range need be defined. Again, the next * seven bits of the logical address are used an index into * the pointer table to point to page tables (if the pointer * is valid). There will undoubtedly be more than one * pointer table for the kernel because each pointer table * defines a range of only 32M. Valid pointer table entries * point to page tables, or are early terminating entries * themselves. * * Page Tables * Per the Pointer Tables, each page table entry points * to the physical page in memory that supports the logical * address that translates to the particular index. * * In short, the Logical Address gets translated as follows: * bits 31..26 - index into the Root Table * bits 25..18 - index into the Pointer Table * bits 17..12 - index into the Page Table * bits 11..0 - offset into a particular 4K page * * The algorithms which follows do one thing: they abstract * the MMU hardware. For example, there are three kinds of * cache settings that are relevant. Either, memory is * being mapped in which case it is either Kernel Code (or * the RamDisk) or it is MMU data. On the 030, the MMU data * option also describes the kernel. Or, I/O is being mapped * in which case it has its own kind of cache bits. There * are constants which abstract these notions from the code that * actually makes the call to map some range of memory. * * * */ #ifdef MMU_PRINT /* * mmu_print * * This algorithm will print out the current MMU mappings. * * Input: * %a5 points to the root table. Everything else is calculated * from this. */ #define mmu_next_valid 0 #define mmu_start_logical 4 #define mmu_next_logical 8 #define mmu_start_physical 12 #define mmu_next_physical 16 #define MMU_PRINT_INVALID -1 #define MMU_PRINT_VALID 1 #define MMU_PRINT_UNINITED 0 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2: func_start mmu_print,%a0-%a6/%d0-%d7 movel %pc@(L(kernel_pgdir_ptr)),%a5 lea %pc@(L(mmu_print_data)),%a0 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid) is_not_040_or_060(mmu_030_print) mmu_040_print: puts "\nMMU040\n" puts "rp:" putn %a5 putc '\n' #if 0 /* * The following #if/#endif block is a tight algorithm for dumping the 040 * MMU Map in gory detail. It really isn't that practical unless the * MMU Map algorithm appears to go awry and you need to debug it at the * entry per entry level. */ movel #ROOT_TABLE_SIZE,%d5 #if 0 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings, subql #1,%d5 | they (might) work #endif 1: tstl %d5 jbeq mmu_print_done subq #1,%d5 movel %a5@+,%d7 btst #1,%d7 jbeq 1b 2: putn %d7 andil #0xFFFFFE00,%d7 movel %d7,%a4 movel #PTR_TABLE_SIZE,%d4 putc ' ' 3: tstl %d4 jbeq 11f subq #1,%d4 movel %a4@+,%d7 btst #1,%d7 jbeq 3b 4: putn %d7 andil #0xFFFFFF00,%d7 movel %d7,%a3 movel #PAGE_TABLE_SIZE,%d3 5: movel #8,%d2 6: tstl %d3 jbeq 31f subq #1,%d3 movel %a3@+,%d6 btst #0,%d6 jbeq 6b 7: tstl %d2 jbeq 8f subq #1,%d2 putc ' ' jbra 91f 8: putc '\n' movel #8+1+8+1+1,%d2 9: putc ' ' dbra %d2,9b movel #7,%d2 91: putn %d6 jbra 6b 31: putc '\n' movel #8+1,%d2 32: putc ' ' dbra %d2,32b jbra 3b 11: putc '\n' jbra 1b #endif /* MMU 040 Dumping code that's gory and detailed */ lea %pc@(kernel_pg_dir),%a5 movel %a5,%a0 /* a0 has the address of the root table ptr */ movel #0x00000000,%a4 /* logical address */ moveql #0,%d0 40: /* Increment the logical address and preserve in d5 */ movel %a4,%d5 addil #PAGESIZE<<13,%d5 movel %a0@+,%d6 btst #1,%d6 jbne 41f jbsr mmu_print_tuple_invalidate jbra 48f 41: movel #0,%d1 andil #0xfffffe00,%d6 movel %d6,%a1 42: movel %a4,%d5 addil #PAGESIZE<<6,%d5 movel %a1@+,%d6 btst #1,%d6 jbne 43f jbsr mmu_print_tuple_invalidate jbra 47f 43: movel #0,%d2 andil #0xffffff00,%d6 movel %d6,%a2 44: movel %a4,%d5 addil #PAGESIZE,%d5 movel %a2@+,%d6 btst #0,%d6 jbne 45f jbsr mmu_print_tuple_invalidate jbra 46f 45: moveml %d0-%d1,%sp@- movel %a4,%d0 movel %d6,%d1 andil #0xfffff4e0,%d1 lea %pc@(mmu_040_print_flags),%a6 jbsr mmu_print_tuple moveml %sp@+,%d0-%d1 46: movel %d5,%a4 addq #1,%d2 cmpib #64,%d2 jbne 44b 47: movel %d5,%a4 addq #1,%d1 cmpib #128,%d1 jbne 42b 48: movel %d5,%a4 /* move to the next logical address */ addq #1,%d0 cmpib #128,%d0 jbne 40b .chip 68040 movec %dtt1,%d0 movel %d0,%d1 andiw #0x8000,%d1 /* is it valid ? */ jbeq 1f /* No, bail out */ movel %d0,%d1 andil #0xff000000,%d1 /* Get the address */ putn %d1 puts "==" putn %d1 movel %d0,%d6 jbsr mmu_040_print_flags_tt 1: movec %dtt0,%d0 movel %d0,%d1 andiw #0x8000,%d1 /* is it valid ? */ jbeq 1f /* No, bail out */ movel %d0,%d1 andil #0xff000000,%d1 /* Get the address */ putn %d1 puts "==" putn %d1 movel %d0,%d6 jbsr mmu_040_print_flags_tt 1: .chip 68k jbra mmu_print_done mmu_040_print_flags: btstl #10,%d6 putZc(' ','G') /* global bit */ btstl #7,%d6 putZc(' ','S') /* supervisor bit */ mmu_040_print_flags_tt: btstl #6,%d6 jbne 3f putc 'C' btstl #5,%d6 putZc('w','c') /* write through or copy-back */ jbra 4f 3: putc 'N' btstl #5,%d6 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */ 4: rts mmu_030_print_flags: btstl #6,%d6 putZc('C','I') /* write through or copy-back */ rts mmu_030_print: puts "\nMMU030\n" puts "\nrp:" putn %a5 putc '\n' movel %a5,%d0 andil #0xfffffff0,%d0 movel %d0,%a0 movel #0x00000000,%a4 /* logical address */ movel #0,%d0 30: movel %a4,%d5 addil #PAGESIZE<<13,%d5 movel %a0@+,%d6 btst #1,%d6 /* is it a table ptr? */ jbne 31f /* yes */ btst #0,%d6 /* is it early terminating? */ jbeq 1f /* no */ jbsr mmu_030_print_helper jbra 38f 1: jbsr mmu_print_tuple_invalidate jbra 38f 31: movel #0,%d1 andil #0xfffffff0,%d6 movel %d6,%a1 32: movel %a4,%d5 addil #PAGESIZE<<6,%d5 movel %a1@+,%d6 btst #1,%d6 /* is it a table ptr? */ jbne 33f /* yes */ btst #0,%d6 /* is it a page descriptor? */ jbeq 1f /* no */ jbsr mmu_030_print_helper jbra 37f 1: jbsr mmu_print_tuple_invalidate jbra 37f 33: movel #0,%d2 andil #0xfffffff0,%d6 movel %d6,%a2 34: movel %a4,%d5 addil #PAGESIZE,%d5 movel %a2@+,%d6 btst #0,%d6 jbne 35f jbsr mmu_print_tuple_invalidate jbra 36f 35: jbsr mmu_030_print_helper 36: movel %d5,%a4 addq #1,%d2 cmpib #64,%d2 jbne 34b 37: movel %d5,%a4 addq #1,%d1 cmpib #128,%d1 jbne 32b 38: movel %d5,%a4 /* move to the next logical address */ addq #1,%d0 cmpib #128,%d0 jbne 30b mmu_print_done: puts "\n\n" func_return mmu_print mmu_030_print_helper: moveml %d0-%d1,%sp@- movel %a4,%d0 movel %d6,%d1 lea %pc@(mmu_030_print_flags),%a6 jbsr mmu_print_tuple moveml %sp@+,%d0-%d1 rts mmu_print_tuple_invalidate: moveml %a0/%d7,%sp@- lea %pc@(L(mmu_print_data)),%a0 tstl %a0@(mmu_next_valid) jbmi mmu_print_tuple_invalidate_exit movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid) putn %a4 puts "##\n" mmu_print_tuple_invalidate_exit: moveml %sp@+,%a0/%d7 rts mmu_print_tuple: moveml %d0-%d7/%a0,%sp@- lea %pc@(L(mmu_print_data)),%a0 tstl %a0@(mmu_next_valid) jble mmu_print_tuple_print cmpl %a0@(mmu_next_physical),%d1 jbeq mmu_print_tuple_increment mmu_print_tuple_print: putn %d0 puts "->" putn %d1 movel %d1,%d6 jbsr %a6@ mmu_print_tuple_record: movel #MMU_PRINT_VALID,%a0@(mmu_next_valid) movel %d1,%a0@(mmu_next_physical) mmu_print_tuple_increment: movel %d5,%d7 subl %a4,%d7 addl %d7,%a0@(mmu_next_physical) mmu_print_tuple_exit: moveml %sp@+,%d0-%d7/%a0 rts mmu_print_machine_cpu_types: puts "machine: " is_not_amiga(1f) puts "amiga" jbra 9f 1: is_not_atari(2f) puts "atari" jbra 9f 2: is_not_mac(3f) puts "macintosh" jbra 9f 3: puts "unknown" 9: putc '\n' puts "cputype: 0" is_not_060(1f) putc '6' jbra 9f 1: is_not_040_or_060(2f) putc '4' jbra 9f 2: putc '3' 9: putc '0' putc '\n' rts #endif /* MMU_PRINT */ /* * mmu_map_tt * * This is a specific function which works on all 680x0 machines. * On 030, 040 & 060 it will attempt to use Transparent Translation * registers (tt1). * On 020 it will call the standard mmu_map which will use early * terminating descriptors. */ func_start mmu_map_tt,%d0/%d1/%a0,4 dputs "mmu_map_tt:" dputn ARG1 dputn ARG2 dputn ARG3 dputn ARG4 dputc '\n' is_020(L(do_map)) /* Extract the highest bit set */ bfffo ARG3{#0,#32},%d1 cmpw #8,%d1 jcc L(do_map) /* And get the mask */ moveq #-1,%d0 lsrl %d1,%d0 lsrl #1,%d0 /* Mask the address */ movel %d0,%d1 notl %d1 andl ARG2,%d1 /* Generate the upper 16bit of the tt register */ lsrl #8,%d0 orl %d0,%d1 clrw %d1 is_040_or_060(L(mmu_map_tt_040)) /* set 030 specific bits (read/write access for supervisor mode * (highest function code set, lower two bits masked)) */ orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1 movel ARG4,%d0 btst #6,%d0 jeq 1f orw #TTR_CI,%d1 1: lea STACK,%a0 dputn %d1 movel %d1,%a0@ .chip 68030 tstl ARG1 jne 1f pmove %a0@,%tt0 jra 2f 1: pmove %a0@,%tt1 2: .chip 68k jra L(mmu_map_tt_done) /* set 040 specific bits */ L(mmu_map_tt_040): orw #TTR_ENABLE+TTR_KERNELMODE,%d1 orl ARG4,%d1 dputn %d1 .chip 68040 tstl ARG1 jne 1f movec %d1,%itt0 movec %d1,%dtt0 jra 2f 1: movec %d1,%itt1 movec %d1,%dtt1 2: .chip 68k jra L(mmu_map_tt_done) L(do_map): mmu_map_eq ARG2,ARG3,ARG4 L(mmu_map_tt_done): func_return mmu_map_tt /* * mmu_map * * This routine will map a range of memory using a pointer * table and allocating the pages on the fly from the kernel. * The pointer table does not have to be already linked into * the root table, this routine will do that if necessary. * * NOTE * This routine will assert failure and use the serial_putc * routines in the case of a run-time error. For example, * if the address is already mapped. * * NOTE-2 * This routine will use early terminating descriptors * where possible for the 68020+68851 and 68030 type * processors. */ func_start mmu_map,%d0-%d4/%a0-%a4 dputs "\nmmu_map:" dputn ARG1 dputn ARG2 dputn ARG3 dputn ARG4 dputc '\n' /* Get logical address and round it down to 256KB */ movel ARG1,%d0 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 movel %d0,%a3 /* Get the end address */ movel ARG1,%a4 addl ARG3,%a4 subql #1,%a4 /* Get physical address and round it down to 256KB */ movel ARG2,%d0 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 movel %d0,%a2 /* Add page attributes to the physical address */ movel ARG4,%d0 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 addw %d0,%a2 dputn %a2 dputn %a3 dputn %a4 is_not_040_or_060(L(mmu_map_030)) addw #_PAGE_GLOBAL040,%a2 /* * MMU 040 & 060 Support * * The MMU usage for the 040 and 060 is different enough from * the 030 and 68851 that there is separate code. This comment * block describes the data structures and algorithms built by * this code. * * The 040 does not support early terminating descriptors, as * the 030 does. Therefore, a third level of table is needed * for the 040, and that would be the page table. In Linux, * page tables are allocated directly from the memory above the * kernel. * */ L(mmu_map_040): /* Calculate the offset into the root table */ movel %a3,%d0 moveq #ROOT_INDEX_SHIFT,%d1 lsrl %d1,%d0 mmu_get_root_table_entry %d0 /* Calculate the offset into the pointer table */ movel %a3,%d0 moveq #PTR_INDEX_SHIFT,%d1 lsrl %d1,%d0 andl #PTR_TABLE_SIZE-1,%d0 mmu_get_ptr_table_entry %a0,%d0 /* Calculate the offset into the page table */ movel %a3,%d0 moveq #PAGE_INDEX_SHIFT,%d1 lsrl %d1,%d0 andl #PAGE_TABLE_SIZE-1,%d0 mmu_get_page_table_entry %a0,%d0 /* The page table entry must not no be busy */ tstl %a0@ jne L(mmu_map_error) /* Do the mapping and advance the pointers */ movel %a2,%a0@ 2: addw #PAGESIZE,%a2 addw #PAGESIZE,%a3 /* Ready with mapping? */ lea %a3@(-1),%a0 cmpl %a0,%a4 jhi L(mmu_map_040) jra L(mmu_map_done) L(mmu_map_030): /* Calculate the offset into the root table */ movel %a3,%d0 moveq #ROOT_INDEX_SHIFT,%d1 lsrl %d1,%d0 mmu_get_root_table_entry %d0 /* Check if logical address 32MB aligned, * so we can try to map it once */ movel %a3,%d0 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0 jne 1f /* Is there enough to map for 32MB at once */ lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1 cmpl %a1,%a4 jcs 1f addql #1,%a1 /* The root table entry must not no be busy */ tstl %a0@ jne L(mmu_map_error) /* Do the mapping and advance the pointers */ dputs "early term1" dputn %a2 dputn %a3 dputn %a1 dputc '\n' movel %a2,%a0@ movel %a1,%a3 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2 jra L(mmu_mapnext_030) 1: /* Calculate the offset into the pointer table */ movel %a3,%d0 moveq #PTR_INDEX_SHIFT,%d1 lsrl %d1,%d0 andl #PTR_TABLE_SIZE-1,%d0 mmu_get_ptr_table_entry %a0,%d0 /* The pointer table entry must not no be busy */ tstl %a0@ jne L(mmu_map_error) /* Do the mapping and advance the pointers */ dputs "early term2" dputn %a2 dputn %a3 dputc '\n' movel %a2,%a0@ addl #PAGE_TABLE_SIZE*PAGESIZE,%a2 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3 L(mmu_mapnext_030): /* Ready with mapping? */ lea %a3@(-1),%a0 cmpl %a0,%a4 jhi L(mmu_map_030) jra L(mmu_map_done) L(mmu_map_error): dputs "mmu_map error:" dputn %a2 dputn %a3 dputc '\n' L(mmu_map_done): func_return mmu_map /* * mmu_fixup * * On the 040 class machines, all pages that are used for the * mmu have to be fixed up. */ func_start mmu_fixup_page_mmu_cache,%d0/%a0 dputs "mmu_fixup_page_mmu_cache" dputn ARG1 /* Calculate the offset into the root table */ movel ARG1,%d0 moveq #ROOT_INDEX_SHIFT,%d1 lsrl %d1,%d0 mmu_get_root_table_entry %d0 /* Calculate the offset into the pointer table */ movel ARG1,%d0 moveq #PTR_INDEX_SHIFT,%d1 lsrl %d1,%d0 andl #PTR_TABLE_SIZE-1,%d0 mmu_get_ptr_table_entry %a0,%d0 /* Calculate the offset into the page table */ movel ARG1,%d0 moveq #PAGE_INDEX_SHIFT,%d1 lsrl %d1,%d0 andl #PAGE_TABLE_SIZE-1,%d0 mmu_get_page_table_entry %a0,%d0 movel %a0@,%d0 andil #_CACHEMASK040,%d0 orl %pc@(m68k_pgtable_cachemode),%d0 movel %d0,%a0@ dputc '\n' func_return mmu_fixup_page_mmu_cache /* * mmu_temp_map * * create a temporary mapping to enable the mmu, * this we don't need any transparation translation tricks. */ func_start mmu_temp_map,%d0/%d1/%a0/%a1 dputs "mmu_temp_map" dputn ARG1 dputn ARG2 dputc '\n' lea %pc@(L(temp_mmap_mem)),%a1 /* Calculate the offset in the root table */ movel ARG2,%d0 moveq #ROOT_INDEX_SHIFT,%d1 lsrl %d1,%d0 mmu_get_root_table_entry %d0 /* Check if the table is temporary allocated, so we have to reuse it */ movel %a0@,%d0 cmpl %pc@(L(memory_start)),%d0 jcc 1f /* Temporary allocate a ptr table and insert it into the root table */ movel %a1@,%d0 addl #PTR_TABLE_SIZE*4,%a1@ orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 movel %d0,%a0@ dputs " (new)" 1: dputn %d0 /* Mask the root table entry for the ptr table */ andw #-ROOT_TABLE_SIZE,%d0 movel %d0,%a0 /* Calculate the offset into the pointer table */ movel ARG2,%d0 moveq #PTR_INDEX_SHIFT,%d1 lsrl %d1,%d0 andl #PTR_TABLE_SIZE-1,%d0 lea %a0@(%d0*4),%a0 dputn %a0 /* Check if a temporary page table is already allocated */ movel %a0@,%d0 jne 1f /* Temporary allocate a page table and insert it into the ptr table */ movel %a1@,%d0 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the alignment restriction for pointer tables on the '0[46]0. */ addl #512,%a1@ orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 movel %d0,%a0@ dputs " (new)" 1: dputn %d0 /* Mask the ptr table entry for the page table */ andw #-PTR_TABLE_SIZE,%d0 movel %d0,%a0 /* Calculate the offset into the page table */ movel ARG2,%d0 moveq #PAGE_INDEX_SHIFT,%d1 lsrl %d1,%d0 andl #PAGE_TABLE_SIZE-1,%d0 lea %a0@(%d0*4),%a0 dputn %a0 /* Insert the address into the page table */ movel ARG1,%d0 andw #-PAGESIZE,%d0 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 movel %d0,%a0@ dputn %d0 dputc '\n' func_return mmu_temp_map func_start mmu_engage,%d0-%d2/%a0-%a3 moveq #ROOT_TABLE_SIZE-1,%d0 /* Temporarily use a different root table. */ lea %pc@(L(kernel_pgdir_ptr)),%a0 movel %a0@,%a2 movel %pc@(L(memory_start)),%a1 movel %a1,%a0@ movel %a2,%a0 1: movel %a0@+,%a1@+ dbra %d0,1b lea %pc@(L(temp_mmap_mem)),%a0 movel %a1,%a0@ movew #PAGESIZE-1,%d0 1: clrl %a1@+ dbra %d0,1b lea %pc@(1b),%a0 movel #1b,%a1 /* Skip temp mappings if phys == virt */ cmpl %a0,%a1 jeq 1f mmu_temp_map %a0,%a0 mmu_temp_map %a0,%a1 addw #PAGESIZE,%a0 addw #PAGESIZE,%a1 mmu_temp_map %a0,%a0 mmu_temp_map %a0,%a1 1: movel %pc@(L(memory_start)),%a3 movel %pc@(L(phys_kernel_start)),%d2 is_not_040_or_060(L(mmu_engage_030)) L(mmu_engage_040): .chip 68040 nop cinva %bc nop pflusha nop movec %a3,%srp movel #TC_ENABLE+TC_PAGE4K,%d0 movec %d0,%tc /* enable the MMU */ jmp 1f:l 1: nop movec %a2,%srp nop cinva %bc nop pflusha .chip 68k jra L(mmu_engage_cleanup) L(mmu_engage_030_temp): .space 12 L(mmu_engage_030): .chip 68030 lea %pc@(L(mmu_engage_030_temp)),%a0 movel #0x80000002,%a0@ movel %a3,%a0@(4) movel #0x0808,%d0 movec %d0,%cacr pmove %a0@,%srp pflusha /* * enable,super root enable,4096 byte pages,7 bit root index, * 7 bit pointer index, 6 bit page table index. */ movel #0x82c07760,%a0@(8) pmove %a0@(8),%tc /* enable the MMU */ jmp 1f:l 1: movel %a2,%a0@(4) movel #0x0808,%d0 movec %d0,%cacr pmove %a0@,%srp pflusha .chip 68k L(mmu_engage_cleanup): subl #PAGE_OFFSET,%d2 subl %d2,%a2 movel %a2,L(kernel_pgdir_ptr) subl %d2,%fp subl %d2,%sp subl %d2,ARG0 func_return mmu_engage func_start mmu_get_root_table_entry,%d0/%a1 #if 0 dputs "mmu_get_root_table_entry:" dputn ARG1 dputs " =" #endif movel %pc@(L(kernel_pgdir_ptr)),%a0 tstl %a0 jne 2f dputs "\nmmu_init:" /* Find the start of free memory, get_bi_record does this for us, * as the bootinfo structure is located directly behind the kernel * and and we simply search for the last entry. */ get_bi_record BI_LAST addw #PAGESIZE-1,%a0 movel %a0,%d0 andw #-PAGESIZE,%d0 dputn %d0 lea %pc@(L(memory_start)),%a0 movel %d0,%a0@ lea %pc@(L(kernel_end)),%a0 movel %d0,%a0@ /* we have to return the first page at _stext since the init code * in mm/init.c simply expects kernel_pg_dir there, the rest of * page is used for further ptr tables in get_ptr_table. */ lea %pc@(_stext),%a0 lea %pc@(L(mmu_cached_pointer_tables)),%a1 movel %a0,%a1@ addl #ROOT_TABLE_SIZE*4,%a1@ lea %pc@(L(mmu_num_pointer_tables)),%a1 addql #1,%a1@ /* clear the page */ movel %a0,%a1 movew #PAGESIZE/4-1,%d0 1: clrl %a1@+ dbra %d0,1b lea %pc@(L(kernel_pgdir_ptr)),%a1 movel %a0,%a1@ dputn %a0 dputc '\n' 2: movel ARG1,%d0 lea %a0@(%d0*4),%a0 #if 0 dputn %a0 dputc '\n' #endif func_return mmu_get_root_table_entry func_start mmu_get_ptr_table_entry,%d0/%a1 #if 0 dputs "mmu_get_ptr_table_entry:" dputn ARG1 dputn ARG2 dputs " =" #endif movel ARG1,%a0 movel %a0@,%d0 jne 2f /* Keep track of the number of pointer tables we use */ dputs "\nmmu_get_new_ptr_table:" lea %pc@(L(mmu_num_pointer_tables)),%a0 movel %a0@,%d0 addql #1,%a0@ /* See if there is a free pointer table in our cache of pointer tables */ lea %pc@(L(mmu_cached_pointer_tables)),%a1 andw #7,%d0 jne 1f /* Get a new pointer table page from above the kernel memory */ get_new_page movel %a0,%a1@ 1: /* There is an unused pointer table in our cache... use it */ movel %a1@,%d0 addl #PTR_TABLE_SIZE*4,%a1@ dputn %d0 dputc '\n' /* Insert the new pointer table into the root table */ movel ARG1,%a0 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 movel %d0,%a0@ 2: /* Extract the pointer table entry */ andw #-PTR_TABLE_SIZE,%d0 movel %d0,%a0 movel ARG2,%d0 lea %a0@(%d0*4),%a0 #if 0 dputn %a0 dputc '\n' #endif func_return mmu_get_ptr_table_entry func_start mmu_get_page_table_entry,%d0/%a1 #if 0 dputs "mmu_get_page_table_entry:" dputn ARG1 dputn ARG2 dputs " =" #endif movel ARG1,%a0 movel %a0@,%d0 jne 2f /* If the page table entry doesn't exist, we allocate a complete new * page and use it as one continues big page table which can cover * 4MB of memory, nearly almost all mappings have that alignment. */ get_new_page addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0 /* align pointer table entry for a page of page tables */ movel ARG1,%d0 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0 movel %d0,%a1 /* Insert the page tables into the pointer entries */ moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0 1: movel %a0,%a1@+ lea %a0@(PAGE_TABLE_SIZE*4),%a0 dbra %d0,1b /* Now we can get the initialized pointer table entry */ movel ARG1,%a0 movel %a0@,%d0 2: /* Extract the page table entry */ andw #-PAGE_TABLE_SIZE,%d0 movel %d0,%a0 movel ARG2,%d0 lea %a0@(%d0*4),%a0 #if 0 dputn %a0 dputc '\n' #endif func_return mmu_get_page_table_entry /* * get_new_page * * Return a new page from the memory start and clear it. */ func_start get_new_page,%d0/%a1 dputs "\nget_new_page:" /* allocate the page and adjust memory_start */ lea %pc@(L(memory_start)),%a0 movel %a0@,%a1 addl #PAGESIZE,%a0@ /* clear the new page */ movel %a1,%a0 movew #PAGESIZE/4-1,%d0 1: clrl %a1@+ dbra %d0,1b dputn %a0 dputc '\n' func_return get_new_page /* * Debug output support * Atarians have a choice between the parallel port, the serial port * from the MFP or a serial port of the SCC */ #ifdef CONFIG_MAC L(scc_initable_mac): .byte 9,12 /* Reset */ .byte 4,0x44 /* x16, 1 stopbit, no parity */ .byte 3,0xc0 /* receiver: 8 bpc */ .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ .byte 9,0 /* no interrupts */ .byte 10,0 /* NRZ */ .byte 11,0x50 /* use baud rate generator */ .byte 12,10,13,0 /* 9600 baud */ .byte 14,1 /* Baud rate generator enable */ .byte 3,0xc1 /* enable receiver */ .byte 5,0xea /* enable transmitter */ .byte -1 .even #endif #ifdef CONFIG_ATARI /* #define USE_PRINTER */ /* #define USE_SCC_B */ /* #define USE_SCC_A */ #define USE_MFP #if defined(USE_SCC_A) || defined(USE_SCC_B) #define USE_SCC /* Initialisation table for SCC */ L(scc_initable): .byte 9,12 /* Reset */ .byte 4,0x44 /* x16, 1 stopbit, no parity */ .byte 3,0xc0 /* receiver: 8 bpc */ .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ .byte 9,0 /* no interrupts */ .byte 10,0 /* NRZ */ .byte 11,0x50 /* use baud rate generator */ .byte 12,24,13,0 /* 9600 baud */ .byte 14,2,14,3 /* use master clock for BRG, enable */ .byte 3,0xc1 /* enable receiver */ .byte 5,0xea /* enable transmitter */ .byte -1 .even #endif #ifdef USE_PRINTER LPSG_SELECT = 0xff8800 LPSG_READ = 0xff8800 LPSG_WRITE = 0xff8802 LPSG_IO_A = 14 LPSG_IO_B = 15 LPSG_CONTROL = 7 LSTMFP_GPIP = 0xfffa01 LSTMFP_DDR = 0xfffa05 LSTMFP_IERB = 0xfffa09 #elif defined(USE_SCC_B) LSCC_CTRL = 0xff8c85 LSCC_DATA = 0xff8c87 #elif defined(USE_SCC_A) LSCC_CTRL = 0xff8c81 LSCC_DATA = 0xff8c83 #elif defined(USE_MFP) LMFP_UCR = 0xfffa29 LMFP_TDCDR = 0xfffa1d LMFP_TDDR = 0xfffa25 LMFP_TSR = 0xfffa2d LMFP_UDR = 0xfffa2f #endif #endif /* CONFIG_ATARI */ /* * Serial port output support. */ /* * Initialize serial port hardware for 9600/8/1 */ func_start serial_init,%d0/%d1/%a0/%a1 /* * Some of the register usage that follows * CONFIG_AMIGA * a0 = pointer to boot info record * d0 = boot info offset * CONFIG_ATARI * a0 = address of SCC * a1 = Liobase address/address of scc_initable * d0 = init data for serial port * CONFIG_MAC * a0 = address of SCC * a1 = address of scc_initable_mac * d0 = init data for serial port */ #ifdef CONFIG_AMIGA #define SERIAL_DTR 7 #define SERIAL_CNTRL CIABBASE+C_PRA is_not_amiga(1f) lea %pc@(L(custom)),%a0 movel #-ZTWOBASE,%a0@ bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE get_bi_record BI_AMIGA_SERPER movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE 1: #endif #ifdef CONFIG_ATARI is_not_atari(4f) movel %pc@(L(iobase)),%a1 #if defined(USE_PRINTER) bclr #0,%a1@(LSTMFP_IERB) bclr #0,%a1@(LSTMFP_DDR) moveb #LPSG_CONTROL,%a1@(LPSG_SELECT) moveb #0xff,%a1@(LPSG_WRITE) moveb #LPSG_IO_B,%a1@(LPSG_SELECT) clrb %a1@(LPSG_WRITE) moveb #LPSG_IO_A,%a1@(LPSG_SELECT) moveb %a1@(LPSG_READ),%d0 bset #5,%d0 moveb %d0,%a1@(LPSG_WRITE) #elif defined(USE_SCC) lea %a1@(LSCC_CTRL),%a0 lea %pc@(L(scc_initable)),%a1 2: moveb %a1@+,%d0 jmi 3f moveb %d0,%a0@ moveb %a1@+,%a0@ jra 2b 3: clrb %a0@ #elif defined(USE_MFP) bclr #1,%a1@(LMFP_TSR) moveb #0x88,%a1@(LMFP_UCR) andb #0x70,%a1@(LMFP_TDCDR) moveb #2,%a1@(LMFP_TDDR) orb #1,%a1@(LMFP_TDCDR) bset #1,%a1@(LMFP_TSR) #endif jra L(serial_init_done) 4: #endif #ifdef CONFIG_MAC is_not_mac(L(serial_init_not_mac)) #ifdef MAC_SERIAL_DEBUG #if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B) #define MAC_USE_SCC_B #endif #define mac_scc_cha_b_ctrl_offset 0x0 #define mac_scc_cha_a_ctrl_offset 0x2 #define mac_scc_cha_b_data_offset 0x4 #define mac_scc_cha_a_data_offset 0x6 #ifdef MAC_USE_SCC_A /* Initialize channel A */ movel %pc@(L(mac_sccbase)),%a0 lea %pc@(L(scc_initable_mac)),%a1 5: moveb %a1@+,%d0 jmi 6f moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset) moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset) jra 5b 6: #endif /* MAC_USE_SCC_A */ #ifdef MAC_USE_SCC_B /* Initialize channel B */ #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */ movel %pc@(L(mac_sccbase)),%a0 #endif /* MAC_USE_SCC_A */ lea %pc@(L(scc_initable_mac)),%a1 7: moveb %a1@+,%d0 jmi 8f moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset) moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset) jra 7b 8: #endif /* MAC_USE_SCC_B */ #endif /* MAC_SERIAL_DEBUG */ jra L(serial_init_done) L(serial_init_not_mac): #endif /* CONFIG_MAC */ #ifdef CONFIG_Q40 is_not_q40(2f) /* debug output goes into SRAM, so we don't do it unless requested - check for '%LX$' signature in SRAM */ lea %pc@(q40_mem_cptr),%a1 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */ move.l #0xff020000,%a1 cmp.b #'%',%a1@ bne 2f /*nodbg*/ addq.w #4,%a1 cmp.b #'L',%a1@ bne 2f /*nodbg*/ addq.w #4,%a1 cmp.b #'X',%a1@ bne 2f /*nodbg*/ addq.w #4,%a1 cmp.b #'$',%a1@ bne 2f /*nodbg*/ /* signature OK */ lea %pc@(L(q40_do_debug)),%a1 tas %a1@ /*nodbg: q40_do_debug is 0 by default*/ 2: #endif #ifdef CONFIG_APOLLO /* We count on the PROM initializing SIO1 */ #endif #ifdef CONFIG_HP300 /* We count on the boot loader initialising the UART */ #endif L(serial_init_done): func_return serial_init /* * Output character on serial port. */ func_start serial_putc,%d0/%d1/%a0/%a1 movel ARG1,%d0 cmpib #'\n',%d0 jbne 1f /* A little safe recursion is good for the soul */ serial_putc #'\r' 1: #ifdef CONFIG_AMIGA is_not_amiga(2f) andw #0x00ff,%d0 oriw #0x0100,%d0 movel %pc@(L(custom)),%a0 movew %d0,%a0@(CUSTOMBASE+C_SERDAT) 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0 andw #0x2000,%d0 jeq 1b jra L(serial_putc_done) 2: #endif #ifdef CONFIG_MAC is_not_mac(5f) #ifdef MAC_SERIAL_DEBUG #ifdef MAC_USE_SCC_A movel %pc@(L(mac_sccbase)),%a1 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset) jeq 3b moveb %d0,%a1@(mac_scc_cha_a_data_offset) #endif /* MAC_USE_SCC_A */ #ifdef MAC_USE_SCC_B #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */ movel %pc@(L(mac_sccbase)),%a1 #endif /* MAC_USE_SCC_A */ 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset) jeq 4b moveb %d0,%a1@(mac_scc_cha_b_data_offset) #endif /* MAC_USE_SCC_B */ #endif /* MAC_SERIAL_DEBUG */ jra L(serial_putc_done) 5: #endif /* CONFIG_MAC */ #ifdef CONFIG_ATARI is_not_atari(4f) movel %pc@(L(iobase)),%a1 #if defined(USE_PRINTER) 3: btst #0,%a1@(LSTMFP_GPIP) jne 3b moveb #LPSG_IO_B,%a1@(LPSG_SELECT) moveb %d0,%a1@(LPSG_WRITE) moveb #LPSG_IO_A,%a1@(LPSG_SELECT) moveb %a1@(LPSG_READ),%d0 bclr #5,%d0 moveb %d0,%a1@(LPSG_WRITE) nop nop bset #5,%d0 moveb %d0,%a1@(LPSG_WRITE) #elif defined(USE_SCC) 3: btst #2,%a1@(LSCC_CTRL) jeq 3b moveb %d0,%a1@(LSCC_DATA) #elif defined(USE_MFP) 3: btst #7,%a1@(LMFP_TSR) jeq 3b moveb %d0,%a1@(LMFP_UDR) #endif jra L(serial_putc_done) 4: #endif /* CONFIG_ATARI */ #ifdef CONFIG_MVME147 is_not_mvme147(2f) 1: btst #2,M147_SCC_CTRL_A jeq 1b moveb %d0,M147_SCC_DATA_A jbra L(serial_putc_done) 2: #endif #ifdef CONFIG_MVME16x is_not_mvme16x(2f) /* * If the loader gave us a board type then we can use that to * select an appropriate output routine; otherwise we just use * the Bug code. If we haev to use the Bug that means the Bug * workspace has to be valid, which means the Bug has to use * the SRAM, which is non-standard. */ moveml %d0-%d7/%a2-%a6,%sp@- movel vme_brdtype,%d1 jeq 1f | No tag - use the Bug cmpi #VME_TYPE_MVME162,%d1 jeq 6f cmpi #VME_TYPE_MVME172,%d1 jne 5f /* 162/172; it's an SCC */ 6: btst #2,M162_SCC_CTRL_A nop nop nop jeq 6b moveb #8,M162_SCC_CTRL_A nop nop nop moveb %d0,M162_SCC_CTRL_A jra 3f 5: /* 166/167/177; it's a CD2401 */ moveb #0,M167_CYCAR moveb M167_CYIER,%d2 moveb #0x02,M167_CYIER 7: btst #5,M167_PCSCCTICR jeq 7b moveb M167_PCTPIACKR,%d1 moveb M167_CYLICR,%d1 jeq 8f moveb #0x08,M167_CYTEOIR jra 7b 8: moveb %d0,M167_CYTDR moveb #0,M167_CYTEOIR moveb %d2,M167_CYIER jra 3f 1: moveb %d0,%sp@- trap #15 .word 0x0020 /* TRAP 0x020 */ 3: moveml %sp@+,%d0-%d7/%a2-%a6 jbra L(serial_putc_done) 2: #endif /* CONFIG_MVME16x */ #ifdef CONFIG_BVME6000 is_not_bvme6000(2f) /* * The BVME6000 machine has a serial port ... */ 1: btst #2,BVME_SCC_CTRL_A jeq 1b moveb %d0,BVME_SCC_DATA_A jbra L(serial_putc_done) 2: #endif #ifdef CONFIG_SUN3X is_not_sun3x(2f) movel %d0,-(%sp) movel 0xFEFE0018,%a1 jbsr (%a1) addq #4,%sp jbra L(serial_putc_done) 2: #endif #ifdef CONFIG_Q40 is_not_q40(2f) tst.l %pc@(L(q40_do_debug)) /* only debug if requested */ beq 2f lea %pc@(q40_mem_cptr),%a1 move.l %a1@,%a0 move.b %d0,%a0@ addq.l #4,%a0 move.l %a0,%a1@ jbra L(serial_putc_done) 2: #endif #ifdef CONFIG_APOLLO is_not_apollo(2f) movl %pc@(L(iobase)),%a1 moveb %d0,%a1@(LTHRB0) 1: moveb %a1@(LSRB0),%d0 andb #0x4,%d0 beq 1b jbra L(serial_putc_done) 2: #endif #ifdef CONFIG_HP300 is_not_hp300(3f) movl %pc@(L(iobase)),%a1 addl %pc@(L(uartbase)),%a1 movel %pc@(L(uart_scode)),%d1 /* Check the scode */ jmi 3f /* Unset? Exit */ cmpi #256,%d1 /* APCI scode? */ jeq 2f 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */ andb #0x20,%d1 beq 1b moveb %d0,%a1@(DCADATA) jbra L(serial_putc_done) 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */ andb #0x20,%d1 beq 2b moveb %d0,%a1@(APCIDATA) jbra L(serial_putc_done) 3: #endif L(serial_putc_done): func_return serial_putc /* * Output a string. */ func_start puts,%d0/%a0 movel ARG1,%a0 jra 2f 1: #ifdef CONSOLE console_putc %d0 #endif #ifdef SERIAL_DEBUG serial_putc %d0 #endif 2: moveb %a0@+,%d0 jne 1b func_return puts /* * Output number in hex notation. */ func_start putn,%d0-%d2 putc ' ' movel ARG1,%d0 moveq #7,%d1 1: roll #4,%d0 move %d0,%d2 andb #0x0f,%d2 addb #'0',%d2 cmpb #'9',%d2 jls 2f addb #'A'-('9'+1),%d2 2: #ifdef CONSOLE console_putc %d2 #endif #ifdef SERIAL_DEBUG serial_putc %d2 #endif dbra %d1,1b func_return putn #ifdef CONFIG_MAC /* * mac_serial_print * * This routine takes its parameters on the stack. It then * turns around and calls the internal routine. This routine * is used until the Linux console driver initializes itself. * * The calling parameters are: * void mac_serial_print(const char *str); * * This routine does NOT understand variable arguments only * simple strings! */ ENTRY(mac_serial_print) moveml %d0/%a0,%sp@- #if 1 move %sr,%sp@- ori #0x0700,%sr #endif movel %sp@(10),%a0 /* fetch parameter */ jra 2f 1: serial_putc %d0 2: moveb %a0@+,%d0 jne 1b #if 1 move %sp@+,%sr #endif moveml %sp@+,%d0/%a0 rts #endif /* CONFIG_MAC */ #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) func_start set_leds,%d0/%a0 movel ARG1,%d0 #ifdef CONFIG_HP300 is_not_hp300(1f) movel %pc@(L(iobase)),%a0 moveb %d0,%a0@(0x1ffff) jra 2f #endif 1: #ifdef CONFIG_APOLLO movel %pc@(L(iobase)),%a0 lsll #8,%d0 eorw #0xff00,%d0 moveb %d0,%a0@(LCPUCTRL) #endif 2: func_return set_leds #endif #ifdef CONSOLE /* * For continuity, see the data alignment * to which this structure is tied. */ #define Lconsole_struct_cur_column 0 #define Lconsole_struct_cur_row 4 #define Lconsole_struct_num_columns 8 #define Lconsole_struct_num_rows 12 #define Lconsole_struct_left_edge 16 #define Lconsole_struct_penguin_putc 20 func_start console_init,%a0-%a4/%d0-%d7 /* * Some of the register usage that follows * a0 = pointer to boot_info * a1 = pointer to screen * a2 = pointer to Lconsole_globals * d3 = pixel width of screen * d4 = pixel height of screen * (d3,d4) ~= (x,y) of a point just below * and to the right of the screen * NOT on the screen! * d5 = number of bytes per scan line * d6 = number of bytes on the entire screen */ lea %pc@(L(console_globals)),%a2 movel %pc@(L(mac_videobase)),%a1 movel %pc@(L(mac_rowbytes)),%d5 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */ movel %d3,%d4 swap %d4 /* -> high byte */ andl #0xffff,%d3 /* d3 = screen width in pixels */ andl #0xffff,%d4 /* d4 = screen height in pixels */ movel %d5,%d6 | subl #20,%d6 mulul %d4,%d6 /* scan line bytes x num scan lines */ divul #8,%d6 /* we'll clear 8 bytes at a time */ moveq #-1,%d0 /* Mac_black */ subq #1,%d6 L(console_clear_loop): movel %d0,%a1@+ movel %d0,%a1@+ dbra %d6,L(console_clear_loop) /* Calculate font size */ #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8) lea %pc@(font_vga_8x8),%a0 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16) lea %pc@(font_vga_8x16),%a0 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11) lea %pc@(font_vga_6x11),%a0 #elif defined(CONFIG_FONT_8x8) /* default */ lea %pc@(font_vga_8x8),%a0 #else /* no compiled-in font */ lea 0,%a0 #endif /* * At this point we make a shift in register usage * a1 = address of console_font pointer */ lea %pc@(L(console_font)),%a1 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */ tstl %a0 jeq 1f lea %pc@(L(console_font_data)),%a4 movel %a0@(FONT_DESC_DATA),%d0 subl #L(console_font),%a1 addl %a1,%d0 movel %d0,%a4@ /* * Calculate global maxs * Note - we can use either an * 8 x 16 or 8 x 8 character font * 6 x 11 also supported */ /* ASSERT: a0 = contents of Lconsole_font */ movel %d3,%d0 /* screen width in pixels */ divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */ movel %d4,%d1 /* screen height in pixels */ divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */ movel %d0,%a2@(Lconsole_struct_num_columns) movel %d1,%a2@(Lconsole_struct_num_rows) /* * Clear the current row and column */ clrl %a2@(Lconsole_struct_cur_column) clrl %a2@(Lconsole_struct_cur_row) clrl %a2@(Lconsole_struct_left_edge) /* * Initialization is complete */ 1: func_return console_init func_start console_put_stats,%a0/%d7 /* * Some of the register usage that follows * a0 = pointer to boot_info * d7 = value of boot_info fields */ puts "\nMacLinux\n\n" #ifdef SERIAL_DEBUG puts " vidaddr:" putn %pc@(L(mac_videobase)) /* video addr. */ puts "\n _stext:" lea %pc@(_stext),%a0 putn %a0 puts "\nbootinfo:" lea %pc@(_end),%a0 putn %a0 puts "\ncpuid:" putn %pc@(L(cputype)) putc '\n' #ifdef MAC_SERIAL_DEBUG putn %pc@(L(mac_sccbase)) putc '\n' #endif # if defined(MMU_PRINT) jbsr mmu_print_machine_cpu_types # endif /* MMU_PRINT */ #endif /* SERIAL_DEBUG */ func_return console_put_stats #ifdef CONSOLE_PENGUIN func_start console_put_penguin,%a0-%a1/%d0-%d7 /* * Get 'that_penguin' onto the screen in the upper right corner * penguin is 64 x 74 pixels, align against right edge of screen */ lea %pc@(L(mac_dimensions)),%a0 movel %a0@,%d0 andil #0xffff,%d0 subil #64,%d0 /* snug up against the right edge */ clrl %d1 /* start at the top */ movel #73,%d7 lea %pc@(L(that_penguin)),%a1 L(console_penguin_row): movel #31,%d6 L(console_penguin_pixel_pair): moveb %a1@,%d2 lsrb #4,%d2 console_plot_pixel %d0,%d1,%d2 addq #1,%d0 moveb %a1@+,%d2 console_plot_pixel %d0,%d1,%d2 addq #1,%d0 dbra %d6,L(console_penguin_pixel_pair) subil #64,%d0 addq #1,%d1 dbra %d7,L(console_penguin_row) func_return console_put_penguin /* include penguin bitmap */ L(that_penguin): #include "../mac/mac_penguin.S" #endif /* * Calculate source and destination addresses * output a1 = dest * a2 = source */ func_start console_scroll,%a0-%a4/%d0-%d7 lea %pc@(L(mac_videobase)),%a0 movel %a0@,%a1 movel %a1,%a2 lea %pc@(L(mac_rowbytes)),%a0 movel %a0@,%d5 movel %pc@(L(console_font)),%a0 tstl %a0 jeq 1f mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */ addal %d5,%a2 /* * Get dimensions */ lea %pc@(L(mac_dimensions)),%a0 movel %a0@,%d3 movel %d3,%d4 swap %d4 andl #0xffff,%d3 /* d3 = screen width in pixels */ andl #0xffff,%d4 /* d4 = screen height in pixels */ /* * Calculate number of bytes to move */ lea %pc@(L(mac_rowbytes)),%a0 movel %a0@,%d6 movel %pc@(L(console_font)),%a0 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */ mulul %d4,%d6 /* scan line bytes x num scan lines */ divul #32,%d6 /* we'll move 8 longs at a time */ subq #1,%d6 L(console_scroll_loop): movel %a2@+,%a1@+ movel %a2@+,%a1@+ movel %a2@+,%a1@+ movel %a2@+,%a1@+ movel %a2@+,%a1@+ movel %a2@+,%a1@+ movel %a2@+,%a1@+ movel %a2@+,%a1@+ dbra %d6,L(console_scroll_loop) lea %pc@(L(mac_rowbytes)),%a0 movel %a0@,%d6 movel %pc@(L(console_font)),%a0 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */ divul #32,%d6 /* we'll move 8 words at a time */ subq #1,%d6 moveq #-1,%d0 L(console_scroll_clear_loop): movel %d0,%a1@+ movel %d0,%a1@+ movel %d0,%a1@+ movel %d0,%a1@+ movel %d0,%a1@+ movel %d0,%a1@+ movel %d0,%a1@+ movel %d0,%a1@+ dbra %d6,L(console_scroll_clear_loop) 1: func_return console_scroll func_start console_putc,%a0/%a1/%d0-%d7 is_not_mac(L(console_exit)) tstl %pc@(L(console_font)) jeq L(console_exit) /* Output character in d7 on console. */ movel ARG1,%d7 cmpib #'\n',%d7 jbne 1f /* A little safe recursion is good for the soul */ console_putc #'\r' 1: lea %pc@(L(console_globals)),%a0 cmpib #10,%d7 jne L(console_not_lf) movel %a0@(Lconsole_struct_cur_row),%d0 addil #1,%d0 movel %d0,%a0@(Lconsole_struct_cur_row) movel %a0@(Lconsole_struct_num_rows),%d1 cmpl %d1,%d0 jcs 1f subil #1,%d0 movel %d0,%a0@(Lconsole_struct_cur_row) console_scroll 1: jra L(console_exit) L(console_not_lf): cmpib #13,%d7 jne L(console_not_cr) clrl %a0@(Lconsole_struct_cur_column) jra L(console_exit) L(console_not_cr): cmpib #1,%d7 jne L(console_not_home) clrl %a0@(Lconsole_struct_cur_row) clrl %a0@(Lconsole_struct_cur_column) jra L(console_exit) /* * At this point we know that the %d7 character is going to be * rendered on the screen. Register usage is - * a0 = pointer to console globals * a1 = font data * d0 = cursor column * d1 = cursor row to draw the character * d7 = character number */ L(console_not_home): movel %a0@(Lconsole_struct_cur_column),%d0 addql #1,%a0@(Lconsole_struct_cur_column) movel %a0@(Lconsole_struct_num_columns),%d1 cmpl %d1,%d0 jcs 1f console_putc #'\n' /* recursion is OK! */ 1: movel %a0@(Lconsole_struct_cur_row),%d1 /* * At this point we make a shift in register usage * a0 = address of pointer to font data (fbcon_font_desc) */ movel %pc@(L(console_font)),%a0 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */ andl #0x000000ff,%d7 /* ASSERT: a0 = contents of Lconsole_font */ mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */ addl %d7,%a1 /* a1 = points to char image */ /* * At this point we make a shift in register usage * d0 = pixel coordinate, x * d1 = pixel coordinate, y * d2 = (bit 0) 1/0 for white/black (!) pixel on screen * d3 = font scan line data (8 pixels) * d6 = count down for the font's pixel width (8) * d7 = count down for the font's pixel count in height */ /* ASSERT: a0 = contents of Lconsole_font */ mulul %a0@(FONT_DESC_WIDTH),%d0 mulul %a0@(FONT_DESC_HEIGHT),%d1 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */ subq #1,%d7 L(console_read_char_scanline): moveb %a1@+,%d3 /* ASSERT: a0 = contents of Lconsole_font */ movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */ subql #1,%d6 L(console_do_font_scanline): lslb #1,%d3 scsb %d2 /* convert 1 bit into a byte */ console_plot_pixel %d0,%d1,%d2 addq #1,%d0 dbra %d6,L(console_do_font_scanline) /* ASSERT: a0 = contents of Lconsole_font */ subl %a0@(FONT_DESC_WIDTH),%d0 addq #1,%d1 dbra %d7,L(console_read_char_scanline) L(console_exit): func_return console_putc /* * Input: * d0 = x coordinate * d1 = y coordinate * d2 = (bit 0) 1/0 for white/black (!) * All registers are preserved */ func_start console_plot_pixel,%a0-%a1/%d0-%d4 movel %pc@(L(mac_videobase)),%a1 movel %pc@(L(mac_videodepth)),%d3 movel ARG1,%d0 movel ARG2,%d1 mulul %pc@(L(mac_rowbytes)),%d1 movel ARG3,%d2 /* * Register usage: * d0 = x coord becomes byte offset into frame buffer * d1 = y coord * d2 = black or white (0/1) * d3 = video depth * d4 = temp of x (d0) for many bit depths */ L(test_1bit): cmpb #1,%d3 jbne L(test_2bit) movel %d0,%d4 /* we need the low order 3 bits! */ divul #8,%d0 addal %d0,%a1 addal %d1,%a1 andb #7,%d4 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */ andb #1,%d2 jbne L(white_1) bsetb %d4,%a1@ jbra L(console_plot_pixel_exit) L(white_1): bclrb %d4,%a1@ jbra L(console_plot_pixel_exit) L(test_2bit): cmpb #2,%d3 jbne L(test_4bit) movel %d0,%d4 /* we need the low order 2 bits! */ divul #4,%d0 addal %d0,%a1 addal %d1,%a1 andb #3,%d4 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */ lsll #1,%d4 /* ! */ andb #1,%d2 jbne L(white_2) bsetb %d4,%a1@ addq #1,%d4 bsetb %d4,%a1@ jbra L(console_plot_pixel_exit) L(white_2): bclrb %d4,%a1@ addq #1,%d4 bclrb %d4,%a1@ jbra L(console_plot_pixel_exit) L(test_4bit): cmpb #4,%d3 jbne L(test_8bit) movel %d0,%d4 /* we need the low order bit! */ divul #2,%d0 addal %d0,%a1 addal %d1,%a1 andb #1,%d4 eorb #1,%d4 lsll #2,%d4 /* ! */ andb #1,%d2 jbne L(white_4) bsetb %d4,%a1@ addq #1,%d4 bsetb %d4,%a1@ addq #1,%d4 bsetb %d4,%a1@ addq #1,%d4 bsetb %d4,%a1@ jbra L(console_plot_pixel_exit) L(white_4): bclrb %d4,%a1@ addq #1,%d4 bclrb %d4,%a1@ addq #1,%d4 bclrb %d4,%a1@ addq #1,%d4 bclrb %d4,%a1@ jbra L(console_plot_pixel_exit) L(test_8bit): cmpb #8,%d3 jbne L(test_16bit) addal %d0,%a1 addal %d1,%a1 andb #1,%d2 jbne L(white_8) moveb #0xff,%a1@ jbra L(console_plot_pixel_exit) L(white_8): clrb %a1@ jbra L(console_plot_pixel_exit) L(test_16bit): cmpb #16,%d3 jbne L(console_plot_pixel_exit) addal %d0,%a1 addal %d0,%a1 addal %d1,%a1 andb #1,%d2 jbne L(white_16) clrw %a1@ jbra L(console_plot_pixel_exit) L(white_16): movew #0x0fff,%a1@ jbra L(console_plot_pixel_exit) L(console_plot_pixel_exit): func_return console_plot_pixel #endif /* CONSOLE */ #if 0 /* * This is some old code lying around. I don't believe * it's used or important anymore. My guess is it contributed * to getting to this point, but it's done for now. * It was still in the 2.1.77 head.S, so it's still here. * (And still not used!) */ L(showtest): moveml %a0/%d7,%sp@- puts "A=" putn %a1 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0 puts "DA=" putn %a0 puts "D=" putn %a0@ puts "S=" lea %pc@(L(mmu)),%a0 .long 0xf0106200 | pmove %psr,%a0@ clrl %d7 movew %a0@,%d7 putn %d7 putc '\n' moveml %sp@+,%a0/%d7 rts #endif /* 0 */ __INITDATA .align 4 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \ defined(CONFIG_HP300) || defined(CONFIG_APOLLO) L(custom): L(iobase): .long 0 #endif #if defined(CONSOLE) L(console_globals): .long 0 /* cursor column */ .long 0 /* cursor row */ .long 0 /* max num columns */ .long 0 /* max num rows */ .long 0 /* left edge */ .long 0 /* mac putc */ L(console_font): .long 0 /* pointer to console font (struct font_desc) */ L(console_font_data): .long 0 /* pointer to console font data */ #endif /* CONSOLE */ #if defined(MMU_PRINT) L(mmu_print_data): .long 0 /* valid flag */ .long 0 /* start logical */ .long 0 /* next logical */ .long 0 /* start physical */ .long 0 /* next physical */ #endif /* MMU_PRINT */ L(cputype): .long 0 L(mmu_cached_pointer_tables): .long 0 L(mmu_num_pointer_tables): .long 0 L(phys_kernel_start): .long 0 L(kernel_end): .long 0 L(memory_start): .long 0 L(kernel_pgdir_ptr): .long 0 L(temp_mmap_mem): .long 0 #if defined (CONFIG_MVME147) M147_SCC_CTRL_A = 0xfffe3002 M147_SCC_DATA_A = 0xfffe3003 #endif #if defined (CONFIG_MVME16x) M162_SCC_CTRL_A = 0xfff45005 M167_CYCAR = 0xfff450ee M167_CYIER = 0xfff45011 M167_CYLICR = 0xfff45026 M167_CYTEOIR = 0xfff45085 M167_CYTDR = 0xfff450f8 M167_PCSCCTICR = 0xfff4201e M167_PCTPIACKR = 0xfff42025 #endif #if defined (CONFIG_BVME6000) BVME_SCC_CTRL_A = 0xffb0000b BVME_SCC_DATA_A = 0xffb0000f #endif #if defined(CONFIG_MAC) L(mac_booter_data): .long 0 L(mac_videobase): .long 0 L(mac_videodepth): .long 0 L(mac_dimensions): .long 0 L(mac_rowbytes): .long 0 #ifdef MAC_SERIAL_DEBUG L(mac_sccbase): .long 0 #endif /* MAC_SERIAL_DEBUG */ #endif #if defined (CONFIG_APOLLO) LSRB0 = 0x10412 LTHRB0 = 0x10416 LCPUCTRL = 0x10100 #endif #if defined(CONFIG_HP300) DCADATA = 0x11 DCALSR = 0x1b APCIDATA = 0x00 APCILSR = 0x14 L(uartbase): .long 0 L(uart_scode): .long -1 #endif __FINIT .data .align 4 availmem: .long 0 m68k_pgtable_cachemode: .long 0 m68k_supervisor_cachemode: .long 0 #if defined(CONFIG_MVME16x) mvme_bdid: .long 0,0,0,0,0,0,0,0 #endif #if defined(CONFIG_Q40) q40_mem_cptr: .long 0 L(q40_do_debug): .long 0 #endif