/* * Miscellaneous Mac68K-specific stuff */ #include <linux/types.h> #include <linux/errno.h> #include <linux/miscdevice.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/rtc.h> #include <linux/mm.h> #include <linux/adb.h> #include <linux/cuda.h> #include <linux/pmu.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/rtc.h> #include <asm/system.h> #include <asm/segment.h> #include <asm/setup.h> #include <asm/macintosh.h> #include <asm/mac_via.h> #include <asm/mac_oss.h> #define BOOTINFO_COMPAT_1_0 #include <asm/bootinfo.h> #include <asm/machdep.h> /* Offset between Unix time (1970-based) and Mac time (1904-based) */ #define RTC_OFFSET 2082844800 static void (*rom_reset)(void); #ifdef CONFIG_ADB_CUDA static long cuda_read_time(void) { struct adb_request req; long time; if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME) < 0) return 0; while (!req.complete) cuda_poll(); time = (req.reply[3] << 24) | (req.reply[4] << 16) | (req.reply[5] << 8) | req.reply[6]; return time - RTC_OFFSET; } static void cuda_write_time(long data) { struct adb_request req; data += RTC_OFFSET; if (cuda_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME, (data >> 24) & 0xFF, (data >> 16) & 0xFF, (data >> 8) & 0xFF, data & 0xFF) < 0) return; while (!req.complete) cuda_poll(); } static __u8 cuda_read_pram(int offset) { struct adb_request req; if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM, (offset >> 8) & 0xFF, offset & 0xFF) < 0) return 0; while (!req.complete) cuda_poll(); return req.reply[3]; } static void cuda_write_pram(int offset, __u8 data) { struct adb_request req; if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM, (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) return; while (!req.complete) cuda_poll(); } #else #define cuda_read_time() 0 #define cuda_write_time(n) #define cuda_read_pram NULL #define cuda_write_pram NULL #endif #if 0 /* def CONFIG_ADB_PMU68K */ static long pmu_read_time(void) { struct adb_request req; long time; if (pmu_request(&req, NULL, 1, PMU_READ_RTC) < 0) return 0; while (!req.complete) pmu_poll(); time = (req.reply[0] << 24) | (req.reply[1] << 16) | (req.reply[2] << 8) | req.reply[3]; return time - RTC_OFFSET; } static void pmu_write_time(long data) { struct adb_request req; data += RTC_OFFSET; if (pmu_request(&req, NULL, 5, PMU_SET_RTC, (data >> 24) & 0xFF, (data >> 16) & 0xFF, (data >> 8) & 0xFF, data & 0xFF) < 0) return; while (!req.complete) pmu_poll(); } static __u8 pmu_read_pram(int offset) { struct adb_request req; if (pmu_request(&req, NULL, 3, PMU_READ_NVRAM, (offset >> 8) & 0xFF, offset & 0xFF) < 0) return 0; while (!req.complete) pmu_poll(); return req.reply[3]; } static void pmu_write_pram(int offset, __u8 data) { struct adb_request req; if (pmu_request(&req, NULL, 4, PMU_WRITE_NVRAM, (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) return; while (!req.complete) pmu_poll(); } #else #define pmu_read_time() 0 #define pmu_write_time(n) #define pmu_read_pram NULL #define pmu_write_pram NULL #endif #if 0 /* def CONFIG_ADB_MACIISI */ extern int maciisi_request(struct adb_request *req, void (*done)(struct adb_request *), int nbytes, ...); static long maciisi_read_time(void) { struct adb_request req; long time; if (maciisi_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME)) return 0; time = (req.reply[3] << 24) | (req.reply[4] << 16) | (req.reply[5] << 8) | req.reply[6]; return time - RTC_OFFSET; } static void maciisi_write_time(long data) { struct adb_request req; data += RTC_OFFSET; maciisi_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME, (data >> 24) & 0xFF, (data >> 16) & 0xFF, (data >> 8) & 0xFF, data & 0xFF); } static __u8 maciisi_read_pram(int offset) { struct adb_request req; if (maciisi_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM, (offset >> 8) & 0xFF, offset & 0xFF)) return 0; return req.reply[3]; } static void maciisi_write_pram(int offset, __u8 data) { struct adb_request req; maciisi_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM, (offset >> 8) & 0xFF, offset & 0xFF, data); } #else #define maciisi_read_time() 0 #define maciisi_write_time(n) #define maciisi_read_pram NULL #define maciisi_write_pram NULL #endif /* * VIA PRAM/RTC access routines * * Must be called with interrupts disabled and * the RTC should be enabled. */ static __u8 via_pram_readbyte(void) { int i,reg; __u8 data; reg = via1[vBufB] & ~VIA1B_vRTCClk; /* Set the RTC data line to be an input. */ via1[vDirB] &= ~VIA1B_vRTCData; /* The bits of the byte come out in MSB order */ data = 0; for (i = 0 ; i < 8 ; i++) { via1[vBufB] = reg; via1[vBufB] = reg | VIA1B_vRTCClk; data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData); } /* Return RTC data line to output state */ via1[vDirB] |= VIA1B_vRTCData; return data; } static void via_pram_writebyte(__u8 data) { int i,reg,bit; reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData); /* The bits of the byte go in in MSB order */ for (i = 0 ; i < 8 ; i++) { bit = data & 0x80? 1 : 0; data <<= 1; via1[vBufB] = reg | bit; via1[vBufB] = reg | bit | VIA1B_vRTCClk; } } /* * Execute a VIA PRAM/RTC command. For read commands * data should point to a one-byte buffer for the * resulting data. For write commands it should point * to the data byte to for the command. * * This function disables all interrupts while running. */ static void via_pram_command(int command, __u8 *data) { unsigned long flags; int is_read; local_irq_save(flags); /* Enable the RTC and make sure the strobe line is high */ via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb; if (command & 0xFF00) { /* extended (two-byte) command */ via_pram_writebyte((command & 0xFF00) >> 8); via_pram_writebyte(command & 0xFF); is_read = command & 0x8000; } else { /* one-byte command */ via_pram_writebyte(command); is_read = command & 0x80; } if (is_read) { *data = via_pram_readbyte(); } else { via_pram_writebyte(*data); } /* All done, disable the RTC */ via1[vBufB] |= VIA1B_vRTCEnb; local_irq_restore(flags); } static __u8 via_read_pram(int offset) { return 0; } static void via_write_pram(int offset, __u8 data) { } /* * Return the current time in seconds since January 1, 1904. * * This only works on machines with the VIA-based PRAM/RTC, which * is basically any machine with Mac II-style ADB. */ static long via_read_time(void) { union { __u8 cdata[4]; long idata; } result, last_result; int ct; /* * The NetBSD guys say to loop until you get the same reading * twice in a row. */ ct = 0; do { if (++ct > 10) { printk("via_read_time: couldn't get valid time, " "last read = 0x%08lx and 0x%08lx\n", last_result.idata, result.idata); break; } last_result.idata = result.idata; result.idata = 0; via_pram_command(0x81, &result.cdata[3]); via_pram_command(0x85, &result.cdata[2]); via_pram_command(0x89, &result.cdata[1]); via_pram_command(0x8D, &result.cdata[0]); } while (result.idata != last_result.idata); return result.idata - RTC_OFFSET; } /* * Set the current time to a number of seconds since January 1, 1904. * * This only works on machines with the VIA-based PRAM/RTC, which * is basically any machine with Mac II-style ADB. */ static void via_write_time(long time) { union { __u8 cdata[4]; long idata; } data; __u8 temp; /* Clear the write protect bit */ temp = 0x55; via_pram_command(0x35, &temp); data.idata = time + RTC_OFFSET; via_pram_command(0x01, &data.cdata[3]); via_pram_command(0x05, &data.cdata[2]); via_pram_command(0x09, &data.cdata[1]); via_pram_command(0x0D, &data.cdata[0]); /* Set the write protect bit */ temp = 0xD5; via_pram_command(0x35, &temp); } static void via_shutdown(void) { if (rbv_present) { via2[rBufB] &= ~0x04; } else { /* Direction of vDirB is output */ via2[vDirB] |= 0x04; /* Send a value of 0 on that line */ via2[vBufB] &= ~0x04; mdelay(1000); } } /* * FIXME: not sure how this is supposed to work exactly... */ static void oss_shutdown(void) { oss->rom_ctrl = OSS_POWEROFF; } #ifdef CONFIG_ADB_CUDA static void cuda_restart(void) { struct adb_request req; if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0) return; while (!req.complete) cuda_poll(); } static void cuda_shutdown(void) { struct adb_request req; if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0) return; while (!req.complete) cuda_poll(); } #endif /* CONFIG_ADB_CUDA */ #ifdef CONFIG_ADB_PMU68K void pmu_restart(void) { struct adb_request req; if (pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0) return; while (!req.complete) pmu_poll(); if (pmu_request(&req, NULL, 1, PMU_RESET) < 0) return; while (!req.complete) pmu_poll(); } void pmu_shutdown(void) { struct adb_request req; if (pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0) return; while (!req.complete) pmu_poll(); if (pmu_request(&req, NULL, 5, PMU_SHUTDOWN, 'M', 'A', 'T', 'T') < 0) return; while (!req.complete) pmu_poll(); } #endif /* *------------------------------------------------------------------- * Below this point are the generic routines; they'll dispatch to the * correct routine for the hardware on which we're running. *------------------------------------------------------------------- */ void mac_pram_read(int offset, __u8 *buffer, int len) { __u8 (*func)(int); int i; switch(macintosh_config->adb_type) { case MAC_ADB_IISI: func = maciisi_read_pram; break; case MAC_ADB_PB1: case MAC_ADB_PB2: func = pmu_read_pram; break; case MAC_ADB_CUDA: func = cuda_read_pram; break; default: func = via_read_pram; } if (!func) return; for (i = 0 ; i < len ; i++) { buffer[i] = (*func)(offset++); } } void mac_pram_write(int offset, __u8 *buffer, int len) { void (*func)(int, __u8); int i; switch(macintosh_config->adb_type) { case MAC_ADB_IISI: func = maciisi_write_pram; break; case MAC_ADB_PB1: case MAC_ADB_PB2: func = pmu_write_pram; break; case MAC_ADB_CUDA: func = cuda_write_pram; break; default: func = via_write_pram; } if (!func) return; for (i = 0 ; i < len ; i++) { (*func)(offset++, buffer[i]); } } void mac_poweroff(void) { /* * MAC_ADB_IISI may need to be moved up here if it doesn't actually * work using the ADB packet method. --David Kilzer */ if (oss_present) { oss_shutdown(); } else if (macintosh_config->adb_type == MAC_ADB_II) { via_shutdown(); #ifdef CONFIG_ADB_CUDA } else if (macintosh_config->adb_type == MAC_ADB_CUDA) { cuda_shutdown(); #endif #ifdef CONFIG_ADB_PMU68K } else if (macintosh_config->adb_type == MAC_ADB_PB1 || macintosh_config->adb_type == MAC_ADB_PB2) { pmu_shutdown(); #endif } local_irq_enable(); printk("It is now safe to turn off your Macintosh.\n"); while(1); } void mac_reset(void) { if (macintosh_config->adb_type == MAC_ADB_II) { unsigned long flags; /* need ROMBASE in booter */ /* indeed, plus need to MAP THE ROM !! */ if (mac_bi_data.rombase == 0) mac_bi_data.rombase = 0x40800000; /* works on some */ rom_reset = (void *) (mac_bi_data.rombase + 0xa); if (macintosh_config->ident == MAC_MODEL_SE30) { /* * MSch: Machines known to crash on ROM reset ... */ } else { local_irq_save(flags); rom_reset(); local_irq_restore(flags); } #ifdef CONFIG_ADB_CUDA } else if (macintosh_config->adb_type == MAC_ADB_CUDA) { cuda_restart(); #endif #ifdef CONFIG_ADB_PMU68K } else if (macintosh_config->adb_type == MAC_ADB_PB1 || macintosh_config->adb_type == MAC_ADB_PB2) { pmu_restart(); #endif } else if (CPU_IS_030) { /* 030-specific reset routine. The idea is general, but the * specific registers to reset are '030-specific. Until I * have a non-030 machine, I can't test anything else. * -- C. Scott Ananian <cananian@alumni.princeton.edu> */ unsigned long rombase = 0x40000000; /* make a 1-to-1 mapping, using the transparent tran. reg. */ unsigned long virt = (unsigned long) mac_reset; unsigned long phys = virt_to_phys(mac_reset); unsigned long addr = (phys&0xFF000000)|0x8777; unsigned long offset = phys-virt; local_irq_disable(); /* lets not screw this up, ok? */ __asm__ __volatile__(".chip 68030\n\t" "pmove %0,%/tt0\n\t" ".chip 68k" : : "m" (addr)); /* Now jump to physical address so we can disable MMU */ __asm__ __volatile__( ".chip 68030\n\t" "lea %/pc@(1f),%/a0\n\t" "addl %0,%/a0\n\t"/* fixup target address and stack ptr */ "addl %0,%/sp\n\t" "pflusha\n\t" "jmp %/a0@\n\t" /* jump into physical memory */ "0:.long 0\n\t" /* a constant zero. */ /* OK. Now reset everything and jump to reset vector. */ "1:\n\t" "lea %/pc@(0b),%/a0\n\t" "pmove %/a0@, %/tc\n\t" /* disable mmu */ "pmove %/a0@, %/tt0\n\t" /* disable tt0 */ "pmove %/a0@, %/tt1\n\t" /* disable tt1 */ "movel #0, %/a0\n\t" "movec %/a0, %/vbr\n\t" /* clear vector base register */ "movec %/a0, %/cacr\n\t" /* disable caches */ "movel #0x0808,%/a0\n\t" "movec %/a0, %/cacr\n\t" /* flush i&d caches */ "movew #0x2700,%/sr\n\t" /* set up status register */ "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */ "movec %/a0, %/isp\n\t" "movel %1@(0x4),%/a0\n\t" /* load reset vector */ "reset\n\t" /* reset external devices */ "jmp %/a0@\n\t" /* jump to the reset vector */ ".chip 68k" : : "r" (offset), "a" (rombase) : "a0"); } /* should never get here */ local_irq_enable(); printk ("Restart failed. Please restart manually.\n"); while(1); } /* * This function translates seconds since 1970 into a proper date. * * Algorithm cribbed from glibc2.1, __offtime(). */ #define SECS_PER_MINUTE (60) #define SECS_PER_HOUR (SECS_PER_MINUTE * 60) #define SECS_PER_DAY (SECS_PER_HOUR * 24) static void unmktime(unsigned long time, long offset, int *yearp, int *monp, int *dayp, int *hourp, int *minp, int *secp) { /* How many days come before each month (0-12). */ static const unsigned short int __mon_yday[2][13] = { /* Normal years. */ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, /* Leap years. */ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } }; long int days, rem, y, wday, yday; const unsigned short int *ip; days = time / SECS_PER_DAY; rem = time % SECS_PER_DAY; rem += offset; while (rem < 0) { rem += SECS_PER_DAY; --days; } while (rem >= SECS_PER_DAY) { rem -= SECS_PER_DAY; ++days; } *hourp = rem / SECS_PER_HOUR; rem %= SECS_PER_HOUR; *minp = rem / SECS_PER_MINUTE; *secp = rem % SECS_PER_MINUTE; /* January 1, 1970 was a Thursday. */ wday = (4 + days) % 7; /* Day in the week. Not currently used */ if (wday < 0) wday += 7; y = 1970; #define DIV(a, b) ((a) / (b) - ((a) % (b) < 0)) #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400)) #define __isleap(year) \ ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) while (days < 0 || days >= (__isleap (y) ? 366 : 365)) { /* Guess a corrected year, assuming 365 days per year. */ long int yg = y + days / 365 - (days % 365 < 0); /* Adjust DAYS and Y to match the guessed year. */ days -= ((yg - y) * 365 + LEAPS_THRU_END_OF (yg - 1) - LEAPS_THRU_END_OF (y - 1)); y = yg; } *yearp = y - 1900; yday = days; /* day in the year. Not currently used. */ ip = __mon_yday[__isleap(y)]; for (y = 11; days < (long int) ip[y]; --y) continue; days -= ip[y]; *monp = y; *dayp = days + 1; /* day in the month */ return; } /* * Read/write the hardware clock. */ int mac_hwclk(int op, struct rtc_time *t) { unsigned long now; if (!op) { /* read */ switch (macintosh_config->adb_type) { case MAC_ADB_II: case MAC_ADB_IOP: now = via_read_time(); break; case MAC_ADB_IISI: now = maciisi_read_time(); break; case MAC_ADB_PB1: case MAC_ADB_PB2: now = pmu_read_time(); break; case MAC_ADB_CUDA: now = cuda_read_time(); break; default: now = 0; } t->tm_wday = 0; unmktime(now, 0, &t->tm_year, &t->tm_mon, &t->tm_mday, &t->tm_hour, &t->tm_min, &t->tm_sec); #if 0 printk("mac_hwclk: read %04d-%02d-%-2d %02d:%02d:%02d\n", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); #endif } else { /* write */ #if 0 printk("mac_hwclk: tried to write %04d-%02d-%-2d %02d:%02d:%02d\n", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); #endif now = mktime(t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); switch (macintosh_config->adb_type) { case MAC_ADB_II: case MAC_ADB_IOP: via_write_time(now); break; case MAC_ADB_CUDA: cuda_write_time(now); break; case MAC_ADB_PB1: case MAC_ADB_PB2: pmu_write_time(now); break; case MAC_ADB_IISI: maciisi_write_time(now); } } return 0; } /* * Set minutes/seconds in the hardware clock */ int mac_set_clock_mmss (unsigned long nowtime) { struct rtc_time now; mac_hwclk(0, &now); now.tm_sec = nowtime % 60; now.tm_min = (nowtime / 60) % 60; mac_hwclk(1, &now); return 0; }