/* * linux/arch/m68knommu/mm/init.c * * Copyright (C) 1998 D. Jeff Dionne <jeff@lineo.ca>, * Kenneth Albanowski <kjahds@kjahds.com>, * Copyright (C) 2000 Lineo, Inc. (www.lineo.com) * * Based on: * * linux/arch/m68k/mm/init.c * * Copyright (C) 1995 Hamish Macdonald * * JAN/1999 -- hacked to support ColdFire (gerg@snapgear.com) * DEC/2000 -- linux 2.4 support <davidm@snapgear.com> */ #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/bootmem.h> #include <linux/slab.h> #include <asm/setup.h> #include <asm/segment.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/machdep.h> #undef DEBUG extern void die_if_kernel(char *,struct pt_regs *,long); extern void free_initmem(void); /* * BAD_PAGE is the page that is used for page faults when linux * is out-of-memory. Older versions of linux just did a * do_exit(), but using this instead means there is less risk * for a process dying in kernel mode, possibly leaving a inode * unused etc.. * * BAD_PAGETABLE is the accompanying page-table: it is initialized * to point to BAD_PAGE entries. * * ZERO_PAGE is a special page that is used for zero-initialized * data and COW. */ static unsigned long empty_bad_page_table; static unsigned long empty_bad_page; unsigned long empty_zero_page; void show_mem(void) { unsigned long i; int free = 0, total = 0, reserved = 0, shared = 0; int cached = 0; printk(KERN_INFO "\nMem-info:\n"); show_free_areas(); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (!page_count(mem_map+i)) free++; else shared += page_count(mem_map+i) - 1; } printk(KERN_INFO "%d pages of RAM\n",total); printk(KERN_INFO "%d free pages\n",free); printk(KERN_INFO "%d reserved pages\n",reserved); printk(KERN_INFO "%d pages shared\n",shared); printk(KERN_INFO "%d pages swap cached\n",cached); } extern unsigned long memory_start; extern unsigned long memory_end; /* * paging_init() continues the virtual memory environment setup which * was begun by the code in arch/head.S. * The parameters are pointers to where to stick the starting and ending * addresses of available kernel virtual memory. */ void paging_init(void) { /* * Make sure start_mem is page aligned, otherwise bootmem and * page_alloc get different views of the world. */ #ifdef DEBUG unsigned long start_mem = PAGE_ALIGN(memory_start); #endif unsigned long end_mem = memory_end & PAGE_MASK; #ifdef DEBUG printk (KERN_DEBUG "start_mem is %#lx\nvirtual_end is %#lx\n", start_mem, end_mem); #endif /* * Initialize the bad page table and bad page to point * to a couple of allocated pages. */ empty_bad_page_table = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); empty_bad_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); memset((void *)empty_zero_page, 0, PAGE_SIZE); /* * Set up SFC/DFC registers (user data space). */ set_fs (USER_DS); #ifdef DEBUG printk (KERN_DEBUG "before free_area_init\n"); printk (KERN_DEBUG "free_area_init -> start_mem is %#lx\nvirtual_end is %#lx\n", start_mem, end_mem); #endif { unsigned long zones_size[MAX_NR_ZONES] = {0, }; zones_size[ZONE_DMA] = 0 >> PAGE_SHIFT; zones_size[ZONE_NORMAL] = (end_mem - PAGE_OFFSET) >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM zones_size[ZONE_HIGHMEM] = 0; #endif free_area_init(zones_size); } } void mem_init(void) { int codek = 0, datak = 0, initk = 0; unsigned long tmp; extern char _etext, _stext, _sdata, _ebss, __init_begin, __init_end; extern unsigned int _ramend, _rambase; unsigned long len = _ramend - _rambase; unsigned long start_mem = memory_start; /* DAVIDM - these must start at end of kernel */ unsigned long end_mem = memory_end; /* DAVIDM - this must not include kernel stack at top */ #ifdef DEBUG printk(KERN_DEBUG "Mem_init: start=%lx, end=%lx\n", start_mem, end_mem); #endif end_mem &= PAGE_MASK; high_memory = (void *) end_mem; start_mem = PAGE_ALIGN(start_mem); max_mapnr = num_physpages = (((unsigned long) high_memory) - PAGE_OFFSET) >> PAGE_SHIFT; /* this will put all memory onto the freelists */ totalram_pages = free_all_bootmem(); codek = (&_etext - &_stext) >> 10; datak = (&_ebss - &_sdata) >> 10; initk = (&__init_begin - &__init_end) >> 10; tmp = nr_free_pages() << PAGE_SHIFT; printk(KERN_INFO "Memory available: %luk/%luk RAM, (%dk kernel code, %dk data)\n", tmp >> 10, len >> 10, codek, datak ); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { int pages = 0; for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); init_page_count(virt_to_page(start)); free_page(start); totalram_pages++; pages++; } printk (KERN_NOTICE "Freeing initrd memory: %dk freed\n", pages); } #endif void free_initmem() { #ifdef CONFIG_RAMKERNEL unsigned long addr; extern char __init_begin, __init_end; /* * The following code should be cool even if these sections * are not page aligned. */ addr = PAGE_ALIGN((unsigned long)(&__init_begin)); /* next to check that the page we free is not a partial page */ for (; addr + PAGE_SIZE < (unsigned long)(&__init_end); addr +=PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); free_page(addr); totalram_pages++; } printk(KERN_NOTICE "Freeing unused kernel memory: %ldk freed (0x%x - 0x%x)\n", (addr - PAGE_ALIGN((long) &__init_begin)) >> 10, (int)(PAGE_ALIGN((unsigned long)(&__init_begin))), (int)(addr - PAGE_SIZE)); #endif }