/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * irixelf.c: Code to load IRIX ELF executables conforming to the MIPS ABI. * Based off of work by Eric Youngdale. * * Copyright (C) 1993 - 1994 Eric Youngdale <ericy@cais.com> * Copyright (C) 1996 - 2004 David S. Miller <dm@engr.sgi.com> * Copyright (C) 2004 - 2005 Steven J. Hill <sjhill@realitydiluted.com> */ #include <linux/module.h> #include <linux/fs.h> #include <linux/stat.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/a.out.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/signal.h> #include <linux/binfmts.h> #include <linux/string.h> #include <linux/file.h> #include <linux/fcntl.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/shm.h> #include <linux/personality.h> #include <linux/elfcore.h> #include <linux/smp_lock.h> #include <asm/mipsregs.h> #include <asm/namei.h> #include <asm/prctl.h> #include <asm/uaccess.h> #define DLINFO_ITEMS 12 #include <linux/elf.h> #undef DEBUG static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs); static int load_irix_library(struct file *); static int irix_core_dump(long signr, struct pt_regs * regs, struct file *file); static struct linux_binfmt irix_format = { NULL, THIS_MODULE, load_irix_binary, load_irix_library, irix_core_dump, PAGE_SIZE }; #ifndef elf_addr_t #define elf_addr_t unsigned long #endif #ifdef DEBUG /* Debugging routines. */ static char *get_elf_p_type(Elf32_Word p_type) { int i = (int) p_type; switch(i) { case PT_NULL: return("PT_NULL"); break; case PT_LOAD: return("PT_LOAD"); break; case PT_DYNAMIC: return("PT_DYNAMIC"); break; case PT_INTERP: return("PT_INTERP"); break; case PT_NOTE: return("PT_NOTE"); break; case PT_SHLIB: return("PT_SHLIB"); break; case PT_PHDR: return("PT_PHDR"); break; case PT_LOPROC: return("PT_LOPROC/REGINFO"); break; case PT_HIPROC: return("PT_HIPROC"); break; default: return("PT_BOGUS"); break; } } static void print_elfhdr(struct elfhdr *ehp) { int i; printk("ELFHDR: e_ident<"); for(i = 0; i < (EI_NIDENT - 1); i++) printk("%x ", ehp->e_ident[i]); printk("%x>\n", ehp->e_ident[i]); printk(" e_type[%04x] e_machine[%04x] e_version[%08lx]\n", (unsigned short) ehp->e_type, (unsigned short) ehp->e_machine, (unsigned long) ehp->e_version); printk(" e_entry[%08lx] e_phoff[%08lx] e_shoff[%08lx] " "e_flags[%08lx]\n", (unsigned long) ehp->e_entry, (unsigned long) ehp->e_phoff, (unsigned long) ehp->e_shoff, (unsigned long) ehp->e_flags); printk(" e_ehsize[%04x] e_phentsize[%04x] e_phnum[%04x]\n", (unsigned short) ehp->e_ehsize, (unsigned short) ehp->e_phentsize, (unsigned short) ehp->e_phnum); printk(" e_shentsize[%04x] e_shnum[%04x] e_shstrndx[%04x]\n", (unsigned short) ehp->e_shentsize, (unsigned short) ehp->e_shnum, (unsigned short) ehp->e_shstrndx); } static void print_phdr(int i, struct elf_phdr *ep) { printk("PHDR[%d]: p_type[%s] p_offset[%08lx] p_vaddr[%08lx] " "p_paddr[%08lx]\n", i, get_elf_p_type(ep->p_type), (unsigned long) ep->p_offset, (unsigned long) ep->p_vaddr, (unsigned long) ep->p_paddr); printk(" p_filesz[%08lx] p_memsz[%08lx] p_flags[%08lx] " "p_align[%08lx]\n", (unsigned long) ep->p_filesz, (unsigned long) ep->p_memsz, (unsigned long) ep->p_flags, (unsigned long) ep->p_align); } static void dump_phdrs(struct elf_phdr *ep, int pnum) { int i; for(i = 0; i < pnum; i++, ep++) { if((ep->p_type == PT_LOAD) || (ep->p_type == PT_INTERP) || (ep->p_type == PT_PHDR)) print_phdr(i, ep); } } #endif /* DEBUG */ static void set_brk(unsigned long start, unsigned long end) { start = PAGE_ALIGN(start); end = PAGE_ALIGN(end); if (end <= start) return; down_write(¤t->mm->mmap_sem); do_brk(start, end - start); up_write(¤t->mm->mmap_sem); } /* We need to explicitly zero any fractional pages * after the data section (i.e. bss). This would * contain the junk from the file that should not * be in memory. */ static void padzero(unsigned long elf_bss) { unsigned long nbyte; nbyte = elf_bss & (PAGE_SIZE-1); if (nbyte) { nbyte = PAGE_SIZE - nbyte; clear_user((void __user *) elf_bss, nbyte); } } static unsigned long * create_irix_tables(char * p, int argc, int envc, struct elfhdr * exec, unsigned int load_addr, unsigned int interp_load_addr, struct pt_regs *regs, struct elf_phdr *ephdr) { elf_addr_t *argv; elf_addr_t *envp; elf_addr_t *sp, *csp; #ifdef DEBUG printk("create_irix_tables: p[%p] argc[%d] envc[%d] " "load_addr[%08x] interp_load_addr[%08x]\n", p, argc, envc, load_addr, interp_load_addr); #endif sp = (elf_addr_t *) (~15UL & (unsigned long) p); csp = sp; csp -= exec ? DLINFO_ITEMS*2 : 2; csp -= envc+1; csp -= argc+1; csp -= 1; /* argc itself */ if ((unsigned long)csp & 15UL) { sp -= (16UL - ((unsigned long)csp & 15UL)) / sizeof(*sp); } /* * Put the ELF interpreter info on the stack */ #define NEW_AUX_ENT(nr, id, val) \ __put_user ((id), sp+(nr*2)); \ __put_user ((val), sp+(nr*2+1)); \ sp -= 2; NEW_AUX_ENT(0, AT_NULL, 0); if(exec) { sp -= 11*2; NEW_AUX_ENT (0, AT_PHDR, load_addr + exec->e_phoff); NEW_AUX_ENT (1, AT_PHENT, sizeof (struct elf_phdr)); NEW_AUX_ENT (2, AT_PHNUM, exec->e_phnum); NEW_AUX_ENT (3, AT_PAGESZ, ELF_EXEC_PAGESIZE); NEW_AUX_ENT (4, AT_BASE, interp_load_addr); NEW_AUX_ENT (5, AT_FLAGS, 0); NEW_AUX_ENT (6, AT_ENTRY, (elf_addr_t) exec->e_entry); NEW_AUX_ENT (7, AT_UID, (elf_addr_t) current->uid); NEW_AUX_ENT (8, AT_EUID, (elf_addr_t) current->euid); NEW_AUX_ENT (9, AT_GID, (elf_addr_t) current->gid); NEW_AUX_ENT (10, AT_EGID, (elf_addr_t) current->egid); } #undef NEW_AUX_ENT sp -= envc+1; envp = sp; sp -= argc+1; argv = sp; __put_user((elf_addr_t)argc,--sp); current->mm->arg_start = (unsigned long) p; while (argc-->0) { __put_user((unsigned long)p,argv++); p += strlen_user(p); } __put_user((unsigned long) NULL, argv); current->mm->arg_end = current->mm->env_start = (unsigned long) p; while (envc-->0) { __put_user((unsigned long)p,envp++); p += strlen_user(p); } __put_user((unsigned long) NULL, envp); current->mm->env_end = (unsigned long) p; return sp; } /* This is much more generalized than the library routine read function, * so we keep this separate. Technically the library read function * is only provided so that we can read a.out libraries that have * an ELF header. */ static unsigned int load_irix_interp(struct elfhdr * interp_elf_ex, struct file * interpreter, unsigned int *interp_load_addr) { struct elf_phdr *elf_phdata = NULL; struct elf_phdr *eppnt; unsigned int len; unsigned int load_addr; int elf_bss; int retval; unsigned int last_bss; int error; int i; unsigned int k; elf_bss = 0; last_bss = 0; error = load_addr = 0; #ifdef DEBUG print_elfhdr(interp_elf_ex); #endif /* First of all, some simple consistency checks */ if ((interp_elf_ex->e_type != ET_EXEC && interp_elf_ex->e_type != ET_DYN) || !interpreter->f_op->mmap) { printk("IRIX interp has bad e_type %d\n", interp_elf_ex->e_type); return 0xffffffff; } /* Now read in all of the header information */ if(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > PAGE_SIZE) { printk("IRIX interp header bigger than a page (%d)\n", (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum)); return 0xffffffff; } elf_phdata = kmalloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum, GFP_KERNEL); if(!elf_phdata) { printk("Cannot kmalloc phdata for IRIX interp.\n"); return 0xffffffff; } /* If the size of this structure has changed, then punt, since * we will be doing the wrong thing. */ if(interp_elf_ex->e_phentsize != 32) { printk("IRIX interp e_phentsize == %d != 32 ", interp_elf_ex->e_phentsize); kfree(elf_phdata); return 0xffffffff; } retval = kernel_read(interpreter, interp_elf_ex->e_phoff, (char *) elf_phdata, sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); #ifdef DEBUG dump_phdrs(elf_phdata, interp_elf_ex->e_phnum); #endif eppnt = elf_phdata; for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) { if(eppnt->p_type == PT_LOAD) { int elf_type = MAP_PRIVATE | MAP_DENYWRITE; int elf_prot = 0; unsigned long vaddr = 0; if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; elf_type |= MAP_FIXED; vaddr = eppnt->p_vaddr; pr_debug("INTERP do_mmap(%p, %08lx, %08lx, %08lx, %08lx, %08lx) ", interpreter, vaddr, (unsigned long) (eppnt->p_filesz + (eppnt->p_vaddr & 0xfff)), (unsigned long) elf_prot, (unsigned long) elf_type, (unsigned long) (eppnt->p_offset & 0xfffff000)); down_write(¤t->mm->mmap_sem); error = do_mmap(interpreter, vaddr, eppnt->p_filesz + (eppnt->p_vaddr & 0xfff), elf_prot, elf_type, eppnt->p_offset & 0xfffff000); up_write(¤t->mm->mmap_sem); if(error < 0 && error > -1024) { printk("Aieee IRIX interp mmap error=%d\n", error); break; /* Real error */ } pr_debug("error=%08lx ", (unsigned long) error); if(!load_addr && interp_elf_ex->e_type == ET_DYN) { load_addr = error; pr_debug("load_addr = error "); } /* Find the end of the file mapping for this phdr, and keep * track of the largest address we see for this. */ k = eppnt->p_vaddr + eppnt->p_filesz; if(k > elf_bss) elf_bss = k; /* Do the same thing for the memory mapping - between * elf_bss and last_bss is the bss section. */ k = eppnt->p_memsz + eppnt->p_vaddr; if(k > last_bss) last_bss = k; pr_debug("\n"); } } /* Now use mmap to map the library into memory. */ if(error < 0 && error > -1024) { pr_debug("got error %d\n", error); kfree(elf_phdata); return 0xffffffff; } /* Now fill out the bss section. First pad the last page up * to the page boundary, and then perform a mmap to make sure * that there are zero-mapped pages up to and including the * last bss page. */ pr_debug("padzero(%08lx) ", (unsigned long) (elf_bss)); padzero(elf_bss); len = (elf_bss + 0xfff) & 0xfffff000; /* What we have mapped so far */ pr_debug("last_bss[%08lx] len[%08lx]\n", (unsigned long) last_bss, (unsigned long) len); /* Map the last of the bss segment */ if (last_bss > len) { down_write(¤t->mm->mmap_sem); do_brk(len, (last_bss - len)); up_write(¤t->mm->mmap_sem); } kfree(elf_phdata); *interp_load_addr = load_addr; return ((unsigned int) interp_elf_ex->e_entry); } /* Check sanity of IRIX elf executable header. */ static int verify_binary(struct elfhdr *ehp, struct linux_binprm *bprm) { if (memcmp(ehp->e_ident, ELFMAG, SELFMAG) != 0) return -ENOEXEC; /* First of all, some simple consistency checks */ if((ehp->e_type != ET_EXEC && ehp->e_type != ET_DYN) || !bprm->file->f_op->mmap) { return -ENOEXEC; } /* XXX Don't support N32 or 64bit binaries yet because they can * XXX and do execute 64 bit instructions and expect all registers * XXX to be 64 bit as well. We need to make the kernel save * XXX all registers as 64bits on cpu's capable of this at * XXX exception time plus frob the XTLB exception vector. */ if((ehp->e_flags & EF_MIPS_ABI2)) return -ENOEXEC; return 0; } /* * This is where the detailed check is performed. Irix binaries * use interpreters with 'libc.so' in the name, so this function * can differentiate between Linux and Irix binaries. */ static inline int look_for_irix_interpreter(char **name, struct file **interpreter, struct elfhdr *interp_elf_ex, struct elf_phdr *epp, struct linux_binprm *bprm, int pnum) { int i; int retval = -EINVAL; struct file *file = NULL; *name = NULL; for(i = 0; i < pnum; i++, epp++) { if (epp->p_type != PT_INTERP) continue; /* It is illegal to have two interpreters for one executable. */ if (*name != NULL) goto out; *name = kmalloc(epp->p_filesz + strlen(IRIX_EMUL), GFP_KERNEL); if (!*name) return -ENOMEM; strcpy(*name, IRIX_EMUL); retval = kernel_read(bprm->file, epp->p_offset, (*name + 16), epp->p_filesz); if (retval < 0) goto out; file = open_exec(*name); if (IS_ERR(file)) { retval = PTR_ERR(file); goto out; } retval = kernel_read(file, 0, bprm->buf, 128); if (retval < 0) goto dput_and_out; *interp_elf_ex = *(struct elfhdr *) bprm->buf; } *interpreter = file; return 0; dput_and_out: fput(file); out: kfree(*name); return retval; } static inline int verify_irix_interpreter(struct elfhdr *ihp) { if (memcmp(ihp->e_ident, ELFMAG, SELFMAG) != 0) return -ELIBBAD; return 0; } #define EXEC_MAP_FLAGS (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE) static inline void map_executable(struct file *fp, struct elf_phdr *epp, int pnum, unsigned int *estack, unsigned int *laddr, unsigned int *scode, unsigned int *ebss, unsigned int *ecode, unsigned int *edata, unsigned int *ebrk) { unsigned int tmp; int i, prot; for(i = 0; i < pnum; i++, epp++) { if(epp->p_type != PT_LOAD) continue; /* Map it. */ prot = (epp->p_flags & PF_R) ? PROT_READ : 0; prot |= (epp->p_flags & PF_W) ? PROT_WRITE : 0; prot |= (epp->p_flags & PF_X) ? PROT_EXEC : 0; down_write(¤t->mm->mmap_sem); (void) do_mmap(fp, (epp->p_vaddr & 0xfffff000), (epp->p_filesz + (epp->p_vaddr & 0xfff)), prot, EXEC_MAP_FLAGS, (epp->p_offset & 0xfffff000)); up_write(¤t->mm->mmap_sem); /* Fixup location tracking vars. */ if((epp->p_vaddr & 0xfffff000) < *estack) *estack = (epp->p_vaddr & 0xfffff000); if(!*laddr) *laddr = epp->p_vaddr - epp->p_offset; if(epp->p_vaddr < *scode) *scode = epp->p_vaddr; tmp = epp->p_vaddr + epp->p_filesz; if(tmp > *ebss) *ebss = tmp; if((epp->p_flags & PF_X) && *ecode < tmp) *ecode = tmp; if(*edata < tmp) *edata = tmp; tmp = epp->p_vaddr + epp->p_memsz; if(tmp > *ebrk) *ebrk = tmp; } } static inline int map_interpreter(struct elf_phdr *epp, struct elfhdr *ihp, struct file *interp, unsigned int *iladdr, int pnum, mm_segment_t old_fs, unsigned int *eentry) { int i; *eentry = 0xffffffff; for(i = 0; i < pnum; i++, epp++) { if(epp->p_type != PT_INTERP) continue; /* We should have fielded this error elsewhere... */ if(*eentry != 0xffffffff) return -1; set_fs(old_fs); *eentry = load_irix_interp(ihp, interp, iladdr); old_fs = get_fs(); set_fs(get_ds()); fput(interp); if (*eentry == 0xffffffff) return -1; } return 0; } /* * IRIX maps a page at 0x200000 that holds information about the * process and the system, here we map the page and fill the * structure */ static void irix_map_prda_page(void) { unsigned long v; struct prda *pp; down_write(¤t->mm->mmap_sem); v = do_brk (PRDA_ADDRESS, PAGE_SIZE); up_write(¤t->mm->mmap_sem); if (v < 0) return; pp = (struct prda *) v; pp->prda_sys.t_pid = current->pid; pp->prda_sys.t_prid = read_c0_prid(); pp->prda_sys.t_rpid = current->pid; /* We leave the rest set to zero */ } /* These are the functions used to load ELF style executables and shared * libraries. There is no binary dependent code anywhere else. */ static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs) { struct elfhdr elf_ex, interp_elf_ex; struct file *interpreter; struct elf_phdr *elf_phdata, *elf_ihdr, *elf_ephdr; unsigned int load_addr, elf_bss, elf_brk; unsigned int elf_entry, interp_load_addr = 0; unsigned int start_code, end_code, end_data, elf_stack; int retval, has_interp, has_ephdr, size, i; char *elf_interpreter; mm_segment_t old_fs; load_addr = 0; has_interp = has_ephdr = 0; elf_ihdr = elf_ephdr = NULL; elf_ex = *((struct elfhdr *) bprm->buf); retval = -ENOEXEC; if (verify_binary(&elf_ex, bprm)) goto out; /* * Telling -o32 static binaries from Linux and Irix apart from each * other is difficult. There are 2 differences to be noted for static * binaries from the 2 operating systems: * * 1) Irix binaries have their .text section before their .init * section. Linux binaries are just the opposite. * * 2) Irix binaries usually have <= 12 sections and Linux * binaries have > 20. * * We will use Method #2 since Method #1 would require us to read in * the section headers which is way too much overhead. This appears * to work for everything we have ran into so far. If anyone has a * better method to tell the binaries apart, I'm listening. */ if (elf_ex.e_shnum > 20) goto out; #ifdef DEBUG print_elfhdr(&elf_ex); #endif /* Now read in all of the header information */ size = elf_ex.e_phentsize * elf_ex.e_phnum; if (size > 65536) goto out; elf_phdata = kmalloc(size, GFP_KERNEL); if (elf_phdata == NULL) { retval = -ENOMEM; goto out; } retval = kernel_read(bprm->file, elf_ex.e_phoff, (char *)elf_phdata, size); if (retval < 0) goto out_free_ph; #ifdef DEBUG dump_phdrs(elf_phdata, elf_ex.e_phnum); #endif /* Set some things for later. */ for(i = 0; i < elf_ex.e_phnum; i++) { switch(elf_phdata[i].p_type) { case PT_INTERP: has_interp = 1; elf_ihdr = &elf_phdata[i]; break; case PT_PHDR: has_ephdr = 1; elf_ephdr = &elf_phdata[i]; break; }; } pr_debug("\n"); elf_bss = 0; elf_brk = 0; elf_stack = 0xffffffff; elf_interpreter = NULL; start_code = 0xffffffff; end_code = 0; end_data = 0; /* * If we get a return value, we change the value to be ENOEXEC * so that we can exit gracefully and the main binary format * search loop in 'fs/exec.c' will move onto the next handler * which should be the normal ELF binary handler. */ retval = look_for_irix_interpreter(&elf_interpreter, &interpreter, &interp_elf_ex, elf_phdata, bprm, elf_ex.e_phnum); if (retval) { retval = -ENOEXEC; goto out_free_file; } if (elf_interpreter) { retval = verify_irix_interpreter(&interp_elf_ex); if(retval) goto out_free_interp; } /* OK, we are done with that, now set up the arg stuff, * and then start this sucker up. */ retval = -E2BIG; if (!bprm->sh_bang && !bprm->p) goto out_free_interp; /* Flush all traces of the currently running executable */ retval = flush_old_exec(bprm); if (retval) goto out_free_dentry; /* OK, This is the point of no return */ current->mm->end_data = 0; current->mm->end_code = 0; current->mm->mmap = NULL; current->flags &= ~PF_FORKNOEXEC; elf_entry = (unsigned int) elf_ex.e_entry; /* Do this so that we can load the interpreter, if need be. We will * change some of these later. */ setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT); current->mm->start_stack = bprm->p; /* At this point, we assume that the image should be loaded at * fixed address, not at a variable address. */ old_fs = get_fs(); set_fs(get_ds()); map_executable(bprm->file, elf_phdata, elf_ex.e_phnum, &elf_stack, &load_addr, &start_code, &elf_bss, &end_code, &end_data, &elf_brk); if(elf_interpreter) { retval = map_interpreter(elf_phdata, &interp_elf_ex, interpreter, &interp_load_addr, elf_ex.e_phnum, old_fs, &elf_entry); kfree(elf_interpreter); if(retval) { set_fs(old_fs); printk("Unable to load IRIX ELF interpreter\n"); send_sig(SIGSEGV, current, 0); retval = 0; goto out_free_file; } } set_fs(old_fs); kfree(elf_phdata); set_personality(PER_IRIX32); set_binfmt(&irix_format); compute_creds(bprm); current->flags &= ~PF_FORKNOEXEC; bprm->p = (unsigned long) create_irix_tables((char *)bprm->p, bprm->argc, bprm->envc, (elf_interpreter ? &elf_ex : NULL), load_addr, interp_load_addr, regs, elf_ephdr); current->mm->start_brk = current->mm->brk = elf_brk; current->mm->end_code = end_code; current->mm->start_code = start_code; current->mm->end_data = end_data; current->mm->start_stack = bprm->p; /* Calling set_brk effectively mmaps the pages that we need for the * bss and break sections. */ set_brk(elf_bss, elf_brk); /* * IRIX maps a page at 0x200000 which holds some system * information. Programs depend on this. */ irix_map_prda_page(); padzero(elf_bss); pr_debug("(start_brk) %lx\n" , (long) current->mm->start_brk); pr_debug("(end_code) %lx\n" , (long) current->mm->end_code); pr_debug("(start_code) %lx\n" , (long) current->mm->start_code); pr_debug("(end_data) %lx\n" , (long) current->mm->end_data); pr_debug("(start_stack) %lx\n" , (long) current->mm->start_stack); pr_debug("(brk) %lx\n" , (long) current->mm->brk); #if 0 /* XXX No fucking way dude... */ /* Why this, you ask??? Well SVr4 maps page 0 as read-only, * and some applications "depend" upon this behavior. * Since we do not have the power to recompile these, we * emulate the SVr4 behavior. Sigh. */ down_write(¤t->mm->mmap_sem); (void) do_mmap(NULL, 0, 4096, PROT_READ | PROT_EXEC, MAP_FIXED | MAP_PRIVATE, 0); up_write(¤t->mm->mmap_sem); #endif start_thread(regs, elf_entry, bprm->p); if (current->ptrace & PT_PTRACED) send_sig(SIGTRAP, current, 0); return 0; out: return retval; out_free_dentry: allow_write_access(interpreter); fput(interpreter); out_free_interp: kfree(elf_interpreter); out_free_file: out_free_ph: kfree (elf_phdata); goto out; } /* This is really simpleminded and specialized - we are loading an * a.out library that is given an ELF header. */ static int load_irix_library(struct file *file) { struct elfhdr elf_ex; struct elf_phdr *elf_phdata = NULL; unsigned int len = 0; int elf_bss = 0; int retval; unsigned int bss; int error; int i,j, k; error = kernel_read(file, 0, (char *) &elf_ex, sizeof(elf_ex)); if (error != sizeof(elf_ex)) return -ENOEXEC; if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) return -ENOEXEC; /* First of all, some simple consistency checks. */ if(elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || !file->f_op->mmap) return -ENOEXEC; /* Now read in all of the header information. */ if(sizeof(struct elf_phdr) * elf_ex.e_phnum > PAGE_SIZE) return -ENOEXEC; elf_phdata = kmalloc(sizeof(struct elf_phdr) * elf_ex.e_phnum, GFP_KERNEL); if (elf_phdata == NULL) return -ENOMEM; retval = kernel_read(file, elf_ex.e_phoff, (char *) elf_phdata, sizeof(struct elf_phdr) * elf_ex.e_phnum); j = 0; for(i=0; i<elf_ex.e_phnum; i++) if((elf_phdata + i)->p_type == PT_LOAD) j++; if(j != 1) { kfree(elf_phdata); return -ENOEXEC; } while(elf_phdata->p_type != PT_LOAD) elf_phdata++; /* Now use mmap to map the library into memory. */ down_write(¤t->mm->mmap_sem); error = do_mmap(file, elf_phdata->p_vaddr & 0xfffff000, elf_phdata->p_filesz + (elf_phdata->p_vaddr & 0xfff), PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, elf_phdata->p_offset & 0xfffff000); up_write(¤t->mm->mmap_sem); k = elf_phdata->p_vaddr + elf_phdata->p_filesz; if (k > elf_bss) elf_bss = k; if (error != (elf_phdata->p_vaddr & 0xfffff000)) { kfree(elf_phdata); return error; } padzero(elf_bss); len = (elf_phdata->p_filesz + elf_phdata->p_vaddr+ 0xfff) & 0xfffff000; bss = elf_phdata->p_memsz + elf_phdata->p_vaddr; if (bss > len) { down_write(¤t->mm->mmap_sem); do_brk(len, bss-len); up_write(¤t->mm->mmap_sem); } kfree(elf_phdata); return 0; } /* Called through irix_syssgi() to map an elf image given an FD, * a phdr ptr USER_PHDRP in userspace, and a count CNT telling how many * phdrs there are in the USER_PHDRP array. We return the vaddr the * first phdr was successfully mapped to. */ unsigned long irix_mapelf(int fd, struct elf_phdr __user *user_phdrp, int cnt) { unsigned long type, vaddr, filesz, offset, flags; struct elf_phdr __user *hp; struct file *filp; int i, retval; pr_debug("irix_mapelf: fd[%d] user_phdrp[%p] cnt[%d]\n", fd, user_phdrp, cnt); /* First get the verification out of the way. */ hp = user_phdrp; if (!access_ok(VERIFY_READ, hp, (sizeof(struct elf_phdr) * cnt))) { pr_debug("irix_mapelf: bad pointer to ELF PHDR!\n"); return -EFAULT; } #ifdef DEBUG dump_phdrs(user_phdrp, cnt); #endif for (i = 0; i < cnt; i++, hp++) { if (__get_user(type, &hp->p_type)) return -EFAULT; if (type != PT_LOAD) { printk("irix_mapelf: One section is not PT_LOAD!\n"); return -ENOEXEC; } } filp = fget(fd); if (!filp) return -EACCES; if(!filp->f_op) { printk("irix_mapelf: Bogon filp!\n"); fput(filp); return -EACCES; } hp = user_phdrp; for(i = 0; i < cnt; i++, hp++) { int prot; retval = __get_user(vaddr, &hp->p_vaddr); retval |= __get_user(filesz, &hp->p_filesz); retval |= __get_user(offset, &hp->p_offset); retval |= __get_user(flags, &hp->p_flags); if (retval) return retval; prot = (flags & PF_R) ? PROT_READ : 0; prot |= (flags & PF_W) ? PROT_WRITE : 0; prot |= (flags & PF_X) ? PROT_EXEC : 0; down_write(¤t->mm->mmap_sem); retval = do_mmap(filp, (vaddr & 0xfffff000), (filesz + (vaddr & 0xfff)), prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), (offset & 0xfffff000)); up_write(¤t->mm->mmap_sem); if (retval != (vaddr & 0xfffff000)) { printk("irix_mapelf: do_mmap fails with %d!\n", retval); fput(filp); return retval; } } pr_debug("irix_mapelf: Success, returning %08lx\n", (unsigned long) user_phdrp->p_vaddr); fput(filp); if (__get_user(vaddr, &user_phdrp->p_vaddr)) return -EFAULT; return vaddr; } /* * ELF core dumper * * Modelled on fs/exec.c:aout_core_dump() * Jeremy Fitzhardinge <jeremy@sw.oz.au> */ /* These are the only things you should do on a core-file: use only these * functions to write out all the necessary info. */ static int dump_write(struct file *file, const void __user *addr, int nr) { return file->f_op->write(file, (const char __user *) addr, nr, &file->f_pos) == nr; } static int dump_seek(struct file *file, off_t off) { if (file->f_op->llseek) { if (file->f_op->llseek(file, off, 0) != off) return 0; } else file->f_pos = off; return 1; } /* Decide whether a segment is worth dumping; default is yes to be * sure (missing info is worse than too much; etc). * Personally I'd include everything, and use the coredump limit... * * I think we should skip something. But I am not sure how. H.J. */ static inline int maydump(struct vm_area_struct *vma) { if (!(vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC))) return 0; #if 1 if (vma->vm_flags & (VM_WRITE|VM_GROWSUP|VM_GROWSDOWN)) return 1; if (vma->vm_flags & (VM_READ|VM_EXEC|VM_EXECUTABLE|VM_SHARED)) return 0; #endif return 1; } /* An ELF note in memory. */ struct memelfnote { const char *name; int type; unsigned int datasz; void *data; }; static int notesize(struct memelfnote *en) { int sz; sz = sizeof(struct elf_note); sz += roundup(strlen(en->name), 4); sz += roundup(en->datasz, 4); return sz; } /* #define DEBUG */ #define DUMP_WRITE(addr, nr) \ if (!dump_write(file, (addr), (nr))) \ goto end_coredump; #define DUMP_SEEK(off) \ if (!dump_seek(file, (off))) \ goto end_coredump; static int writenote(struct memelfnote *men, struct file *file) { struct elf_note en; en.n_namesz = strlen(men->name); en.n_descsz = men->datasz; en.n_type = men->type; DUMP_WRITE(&en, sizeof(en)); DUMP_WRITE(men->name, en.n_namesz); /* XXX - cast from long long to long to avoid need for libgcc.a */ DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ DUMP_WRITE(men->data, men->datasz); DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ return 1; end_coredump: return 0; } #undef DUMP_WRITE #undef DUMP_SEEK #define DUMP_WRITE(addr, nr) \ if (!dump_write(file, (addr), (nr))) \ goto end_coredump; #define DUMP_SEEK(off) \ if (!dump_seek(file, (off))) \ goto end_coredump; /* Actual dumper. * * This is a two-pass process; first we find the offsets of the bits, * and then they are actually written out. If we run out of core limit * we just truncate. */ static int irix_core_dump(long signr, struct pt_regs * regs, struct file *file) { int has_dumped = 0; mm_segment_t fs; int segs; int i; size_t size; struct vm_area_struct *vma; struct elfhdr elf; off_t offset = 0, dataoff; int limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; int numnote = 3; struct memelfnote notes[3]; struct elf_prstatus prstatus; /* NT_PRSTATUS */ elf_fpregset_t fpu; /* NT_PRFPREG */ struct elf_prpsinfo psinfo; /* NT_PRPSINFO */ /* Count what's needed to dump, up to the limit of coredump size. */ segs = 0; size = 0; for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { if (maydump(vma)) { int sz = vma->vm_end-vma->vm_start; if (size+sz >= limit) break; else size += sz; } segs++; } #ifdef DEBUG printk("irix_core_dump: %d segs taking %d bytes\n", segs, size); #endif /* Set up header. */ memcpy(elf.e_ident, ELFMAG, SELFMAG); elf.e_ident[EI_CLASS] = ELFCLASS32; elf.e_ident[EI_DATA] = ELFDATA2LSB; elf.e_ident[EI_VERSION] = EV_CURRENT; elf.e_ident[EI_OSABI] = ELF_OSABI; memset(elf.e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); elf.e_type = ET_CORE; elf.e_machine = ELF_ARCH; elf.e_version = EV_CURRENT; elf.e_entry = 0; elf.e_phoff = sizeof(elf); elf.e_shoff = 0; elf.e_flags = 0; elf.e_ehsize = sizeof(elf); elf.e_phentsize = sizeof(struct elf_phdr); elf.e_phnum = segs+1; /* Include notes. */ elf.e_shentsize = 0; elf.e_shnum = 0; elf.e_shstrndx = 0; fs = get_fs(); set_fs(KERNEL_DS); has_dumped = 1; current->flags |= PF_DUMPCORE; DUMP_WRITE(&elf, sizeof(elf)); offset += sizeof(elf); /* Elf header. */ offset += (segs+1) * sizeof(struct elf_phdr); /* Program headers. */ /* Set up the notes in similar form to SVR4 core dumps made * with info from their /proc. */ memset(&psinfo, 0, sizeof(psinfo)); memset(&prstatus, 0, sizeof(prstatus)); notes[0].name = "CORE"; notes[0].type = NT_PRSTATUS; notes[0].datasz = sizeof(prstatus); notes[0].data = &prstatus; prstatus.pr_info.si_signo = prstatus.pr_cursig = signr; prstatus.pr_sigpend = current->pending.signal.sig[0]; prstatus.pr_sighold = current->blocked.sig[0]; psinfo.pr_pid = prstatus.pr_pid = current->pid; psinfo.pr_ppid = prstatus.pr_ppid = current->parent->pid; psinfo.pr_pgrp = prstatus.pr_pgrp = process_group(current); psinfo.pr_sid = prstatus.pr_sid = current->signal->session; if (current->pid == current->tgid) { /* * This is the record for the group leader. Add in the * cumulative times of previous dead threads. This total * won't include the time of each live thread whose state * is included in the core dump. The final total reported * to our parent process when it calls wait4 will include * those sums as well as the little bit more time it takes * this and each other thread to finish dying after the * core dump synchronization phase. */ jiffies_to_timeval(current->utime + current->signal->utime, &prstatus.pr_utime); jiffies_to_timeval(current->stime + current->signal->stime, &prstatus.pr_stime); } else { jiffies_to_timeval(current->utime, &prstatus.pr_utime); jiffies_to_timeval(current->stime, &prstatus.pr_stime); } jiffies_to_timeval(current->signal->cutime, &prstatus.pr_cutime); jiffies_to_timeval(current->signal->cstime, &prstatus.pr_cstime); if (sizeof(elf_gregset_t) != sizeof(struct pt_regs)) { printk("sizeof(elf_gregset_t) (%d) != sizeof(struct pt_regs) " "(%d)\n", sizeof(elf_gregset_t), sizeof(struct pt_regs)); } else { *(struct pt_regs *)&prstatus.pr_reg = *regs; } notes[1].name = "CORE"; notes[1].type = NT_PRPSINFO; notes[1].datasz = sizeof(psinfo); notes[1].data = &psinfo; i = current->state ? ffz(~current->state) + 1 : 0; psinfo.pr_state = i; psinfo.pr_sname = (i < 0 || i > 5) ? '.' : "RSDZTD"[i]; psinfo.pr_zomb = psinfo.pr_sname == 'Z'; psinfo.pr_nice = task_nice(current); psinfo.pr_flag = current->flags; psinfo.pr_uid = current->uid; psinfo.pr_gid = current->gid; { int i, len; set_fs(fs); len = current->mm->arg_end - current->mm->arg_start; len = len >= ELF_PRARGSZ ? ELF_PRARGSZ : len; (void *) copy_from_user(&psinfo.pr_psargs, (const char __user *)current->mm->arg_start, len); for (i = 0; i < len; i++) if (psinfo.pr_psargs[i] == 0) psinfo.pr_psargs[i] = ' '; psinfo.pr_psargs[len] = 0; set_fs(KERNEL_DS); } strlcpy(psinfo.pr_fname, current->comm, sizeof(psinfo.pr_fname)); /* Try to dump the FPU. */ prstatus.pr_fpvalid = dump_fpu (regs, &fpu); if (!prstatus.pr_fpvalid) { numnote--; } else { notes[2].name = "CORE"; notes[2].type = NT_PRFPREG; notes[2].datasz = sizeof(fpu); notes[2].data = &fpu; } /* Write notes phdr entry. */ { struct elf_phdr phdr; int sz = 0; for(i = 0; i < numnote; i++) sz += notesize(¬es[i]); phdr.p_type = PT_NOTE; phdr.p_offset = offset; phdr.p_vaddr = 0; phdr.p_paddr = 0; phdr.p_filesz = sz; phdr.p_memsz = 0; phdr.p_flags = 0; phdr.p_align = 0; offset += phdr.p_filesz; DUMP_WRITE(&phdr, sizeof(phdr)); } /* Page-align dumped data. */ dataoff = offset = roundup(offset, PAGE_SIZE); /* Write program headers for segments dump. */ for(vma = current->mm->mmap, i = 0; i < segs && vma != NULL; vma = vma->vm_next) { struct elf_phdr phdr; size_t sz; i++; sz = vma->vm_end - vma->vm_start; phdr.p_type = PT_LOAD; phdr.p_offset = offset; phdr.p_vaddr = vma->vm_start; phdr.p_paddr = 0; phdr.p_filesz = maydump(vma) ? sz : 0; phdr.p_memsz = sz; offset += phdr.p_filesz; phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; if (vma->vm_flags & VM_WRITE) phdr.p_flags |= PF_W; if (vma->vm_flags & VM_EXEC) phdr.p_flags |= PF_X; phdr.p_align = PAGE_SIZE; DUMP_WRITE(&phdr, sizeof(phdr)); } for(i = 0; i < numnote; i++) if (!writenote(¬es[i], file)) goto end_coredump; set_fs(fs); DUMP_SEEK(dataoff); for(i = 0, vma = current->mm->mmap; i < segs && vma != NULL; vma = vma->vm_next) { unsigned long addr = vma->vm_start; unsigned long len = vma->vm_end - vma->vm_start; if (!maydump(vma)) continue; i++; #ifdef DEBUG printk("elf_core_dump: writing %08lx %lx\n", addr, len); #endif DUMP_WRITE((void __user *)addr, len); } if ((off_t) file->f_pos != offset) { /* Sanity check. */ printk("elf_core_dump: file->f_pos (%ld) != offset (%ld)\n", (off_t) file->f_pos, offset); } end_coredump: set_fs(fs); return has_dumped; } static int __init init_irix_binfmt(void) { extern int init_inventory(void); extern asmlinkage unsigned long sys_call_table; extern asmlinkage unsigned long sys_call_table_irix5; init_inventory(); /* * Copy the IRIX5 syscall table (8000 bytes) into the main syscall * table. The IRIX5 calls are located by an offset of 8000 bytes * from the beginning of the main table. */ memcpy((void *) ((unsigned long) &sys_call_table + 8000), &sys_call_table_irix5, 8000); return register_binfmt(&irix_format); } static void __exit exit_irix_binfmt(void) { /* * Remove the Irix ELF loader. */ unregister_binfmt(&irix_format); } module_init(init_irix_binfmt) module_exit(exit_irix_binfmt)