/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995 Waldorf Electronics * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle * Copyright (C) 1996 Stoned Elipot * Copyright (C) 1999 Silicon Graphics, Inc. * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_data); #ifdef CONFIG_VT struct screen_info screen_info; #endif /* * Despite it's name this variable is even if we don't have PCI */ unsigned int PCI_DMA_BUS_IS_PHYS; EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); /* * Setup information * * These are initialized so they are in the .data section */ unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN; EXPORT_SYMBOL(mips_machtype); EXPORT_SYMBOL(mips_machgroup); struct boot_mem_map boot_mem_map; static char command_line[CL_SIZE]; char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE; /* * mips_io_port_base is the begin of the address space to which x86 style * I/O ports are mapped. */ const unsigned long mips_io_port_base __read_mostly = -1; EXPORT_SYMBOL(mips_io_port_base); /* * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped * for the processor. */ unsigned long isa_slot_offset; EXPORT_SYMBOL(isa_slot_offset); static struct resource code_resource = { .name = "Kernel code", }; static struct resource data_resource = { .name = "Kernel data", }; void __init add_memory_region(phys_t start, phys_t size, long type) { int x = boot_mem_map.nr_map; struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; /* Sanity check */ if (start + size < start) { printk("Trying to add an invalid memory region, skipped\n"); return; } /* * Try to merge with previous entry if any. This is far less than * perfect but is sufficient for most real world cases. */ if (x && prev->addr + prev->size == start && prev->type == type) { prev->size += size; return; } if (x == BOOT_MEM_MAP_MAX) { printk("Ooops! Too many entries in the memory map!\n"); return; } boot_mem_map.map[x].addr = start; boot_mem_map.map[x].size = size; boot_mem_map.map[x].type = type; boot_mem_map.nr_map++; } static void __init print_memory_map(void) { int i; const int field = 2 * sizeof(unsigned long); for (i = 0; i < boot_mem_map.nr_map; i++) { printk(" memory: %0*Lx @ %0*Lx ", field, (unsigned long long) boot_mem_map.map[i].size, field, (unsigned long long) boot_mem_map.map[i].addr); switch (boot_mem_map.map[i].type) { case BOOT_MEM_RAM: printk("(usable)\n"); break; case BOOT_MEM_ROM_DATA: printk("(ROM data)\n"); break; case BOOT_MEM_RESERVED: printk("(reserved)\n"); break; default: printk("type %lu\n", boot_mem_map.map[i].type); break; } } } /* * Manage initrd */ #ifdef CONFIG_BLK_DEV_INITRD static int __init rd_start_early(char *p) { unsigned long start = memparse(p, &p); #ifdef CONFIG_64BIT /* Guess if the sign extension was forgotten by bootloader */ if (start < XKPHYS) start = (int)start; #endif initrd_start = start; initrd_end += start; return 0; } early_param("rd_start", rd_start_early); static int __init rd_size_early(char *p) { initrd_end += memparse(p, &p); return 0; } early_param("rd_size", rd_size_early); /* it returns the next free pfn after initrd */ static unsigned long __init init_initrd(void) { unsigned long end; u32 *initrd_header; /* * Board specific code or command line parser should have * already set up initrd_start and initrd_end. In these cases * perfom sanity checks and use them if all looks good. */ if (initrd_start && initrd_end > initrd_start) goto sanitize; /* * See if initrd has been added to the kernel image by * arch/mips/boot/addinitrd.c. In that case a header is * prepended to initrd and is made up by 8 bytes. The fisrt * word is a magic number and the second one is the size of * initrd. Initrd start must be page aligned in any cases. */ initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8; if (initrd_header[0] != 0x494E5244) goto disable; initrd_start = (unsigned long)(initrd_header + 2); initrd_end = initrd_start + initrd_header[1]; sanitize: if (initrd_start & ~PAGE_MASK) { printk(KERN_ERR "initrd start must be page aligned\n"); goto disable; } if (initrd_start < PAGE_OFFSET) { printk(KERN_ERR "initrd start < PAGE_OFFSET\n"); goto disable; } /* * Sanitize initrd addresses. For example firmware * can't guess if they need to pass them through * 64-bits values if the kernel has been built in pure * 32-bit. We need also to switch from KSEG0 to XKPHYS * addresses now, so the code can now safely use __pa(). */ end = __pa(initrd_end); initrd_end = (unsigned long)__va(end); initrd_start = (unsigned long)__va(__pa(initrd_start)); ROOT_DEV = Root_RAM0; return PFN_UP(end); disable: initrd_start = 0; initrd_end = 0; return 0; } static void __init finalize_initrd(void) { unsigned long size = initrd_end - initrd_start; if (size == 0) { printk(KERN_INFO "Initrd not found or empty"); goto disable; } if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { printk("Initrd extends beyond end of memory"); goto disable; } reserve_bootmem(__pa(initrd_start), size); initrd_below_start_ok = 1; printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n", initrd_start, size); return; disable: printk(" - disabling initrd\n"); initrd_start = 0; initrd_end = 0; } #else /* !CONFIG_BLK_DEV_INITRD */ static unsigned long __init init_initrd(void) { return 0; } #define finalize_initrd() do {} while (0) #endif /* * Initialize the bootmem allocator. It also setup initrd related data * if needed. */ #ifdef CONFIG_SGI_IP27 static void __init bootmem_init(void) { init_initrd(); finalize_initrd(); } #else /* !CONFIG_SGI_IP27 */ static void __init bootmem_init(void) { unsigned long reserved_end; unsigned long mapstart = ~0UL; unsigned long bootmap_size; int i; /* * Init any data related to initrd. It's a nop if INITRD is * not selected. Once that done we can determine the low bound * of usable memory. */ reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end))); /* * max_low_pfn is not a number of pages. The number of pages * of the system is given by 'max_low_pfn - min_low_pfn'. */ min_low_pfn = ~0UL; max_low_pfn = 0; /* * Find the highest page frame number we have available. */ for (i = 0; i < boot_mem_map.nr_map; i++) { unsigned long start, end; if (boot_mem_map.map[i].type != BOOT_MEM_RAM) continue; start = PFN_UP(boot_mem_map.map[i].addr); end = PFN_DOWN(boot_mem_map.map[i].addr + boot_mem_map.map[i].size); if (end > max_low_pfn) max_low_pfn = end; if (start < min_low_pfn) min_low_pfn = start; if (end <= reserved_end) continue; if (start >= mapstart) continue; mapstart = max(reserved_end, start); } if (min_low_pfn >= max_low_pfn) panic("Incorrect memory mapping !!!"); if (min_low_pfn > 0) { printk(KERN_INFO "Wasting %lu bytes for tracking %lu unused pages\n", min_low_pfn * sizeof(struct page), min_low_pfn); min_low_pfn = 0; } /* * Determine low and high memory ranges */ if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { #ifdef CONFIG_HIGHMEM highstart_pfn = PFN_DOWN(HIGHMEM_START); highend_pfn = max_low_pfn; #endif max_low_pfn = PFN_DOWN(HIGHMEM_START); } /* * Initialize the boot-time allocator with low memory only. */ bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, min_low_pfn, max_low_pfn); /* * Register fully available low RAM pages with the bootmem allocator. */ for (i = 0; i < boot_mem_map.nr_map; i++) { unsigned long start, end, size; /* * Reserve usable memory. */ if (boot_mem_map.map[i].type != BOOT_MEM_RAM) continue; start = PFN_UP(boot_mem_map.map[i].addr); end = PFN_DOWN(boot_mem_map.map[i].addr + boot_mem_map.map[i].size); /* * We are rounding up the start address of usable memory * and at the end of the usable range downwards. */ if (start >= max_low_pfn) continue; if (start < reserved_end) start = reserved_end; if (end > max_low_pfn) end = max_low_pfn; /* * ... finally, is the area going away? */ if (end <= start) continue; size = end - start; /* Register lowmem ranges */ free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); memory_present(0, start, end); } /* * Reserve the bootmap memory. */ reserve_bootmem(PFN_PHYS(mapstart), bootmap_size); /* * Reserve initrd memory if needed. */ finalize_initrd(); } #endif /* CONFIG_SGI_IP27 */ /* * arch_mem_init - initialize memory managment subsystem * * o plat_mem_setup() detects the memory configuration and will record detected * memory areas using add_memory_region. * * At this stage the memory configuration of the system is known to the * kernel but generic memory managment system is still entirely uninitialized. * * o bootmem_init() * o sparse_init() * o paging_init() * * At this stage the bootmem allocator is ready to use. * * NOTE: historically plat_mem_setup did the entire platform initialization. * This was rather impractical because it meant plat_mem_setup had to * get away without any kind of memory allocator. To keep old code from * breaking plat_setup was just renamed to plat_setup and a second platform * initialization hook for anything else was introduced. */ static int usermem __initdata = 0; static int __init early_parse_mem(char *p) { unsigned long start, size; /* * If a user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { boot_mem_map.nr_map = 0; usermem = 1; } start = 0; size = memparse(p, &p); if (*p == '@') start = memparse(p + 1, &p); add_memory_region(start, size, BOOT_MEM_RAM); return 0; } early_param("mem", early_parse_mem); static void __init arch_mem_init(char **cmdline_p) { extern void plat_mem_setup(void); /* call board setup routine */ plat_mem_setup(); printk("Determined physical RAM map:\n"); print_memory_map(); strlcpy(command_line, arcs_cmdline, sizeof(command_line)); strlcpy(saved_command_line, command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_early_param(); if (usermem) { printk("User-defined physical RAM map:\n"); print_memory_map(); } bootmem_init(); sparse_init(); paging_init(); } static void __init resource_init(void) { int i; if (UNCAC_BASE != IO_BASE) return; code_resource.start = __pa_symbol(&_text); code_resource.end = __pa_symbol(&_etext) - 1; data_resource.start = __pa_symbol(&_etext); data_resource.end = __pa_symbol(&_edata) - 1; /* * Request address space for all standard RAM. */ for (i = 0; i < boot_mem_map.nr_map; i++) { struct resource *res; unsigned long start, end; start = boot_mem_map.map[i].addr; end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; if (start >= HIGHMEM_START) continue; if (end >= HIGHMEM_START) end = HIGHMEM_START - 1; res = alloc_bootmem(sizeof(struct resource)); switch (boot_mem_map.map[i].type) { case BOOT_MEM_RAM: case BOOT_MEM_ROM_DATA: res->name = "System RAM"; break; case BOOT_MEM_RESERVED: default: res->name = "reserved"; } res->start = start; res->end = end; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; request_resource(&iomem_resource, res); /* * We don't know which RAM region contains kernel data, * so we try it repeatedly and let the resource manager * test it. */ request_resource(res, &code_resource); request_resource(res, &data_resource); } } void __init setup_arch(char **cmdline_p) { cpu_probe(); prom_init(); cpu_report(); #if defined(CONFIG_VT) #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif arch_mem_init(cmdline_p); resource_init(); #ifdef CONFIG_SMP plat_smp_setup(); #endif } int __init fpu_disable(char *s) { int i; for (i = 0; i < NR_CPUS; i++) cpu_data[i].options &= ~MIPS_CPU_FPU; return 1; } __setup("nofpu", fpu_disable); int __init dsp_disable(char *s) { cpu_data[0].ases &= ~MIPS_ASE_DSP; return 1; } __setup("nodsp", dsp_disable);