/* ** PARISC 1.1 Dynamic DMA mapping support. ** This implementation is for PA-RISC platforms that do not support ** I/O TLBs (aka DMA address translation hardware). ** See Documentation/DMA-mapping.txt for interface definitions. ** ** (c) Copyright 1999,2000 Hewlett-Packard Company ** (c) Copyright 2000 Grant Grundler ** (c) Copyright 2000 Philipp Rumpf <prumpf@tux.org> ** (c) Copyright 2000 John Marvin ** ** "leveraged" from 2.3.47: arch/ia64/kernel/pci-dma.c. ** (I assume it's from David Mosberger-Tang but there was no Copyright) ** ** AFAIK, all PA7100LC and PA7300LC platforms can use this code. ** ** - ggg */ #include <linux/init.h> #include <linux/mm.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/types.h> #include <linux/scatterlist.h> #include <asm/cacheflush.h> #include <asm/dma.h> /* for DMA_CHUNK_SIZE */ #include <asm/io.h> #include <asm/page.h> /* get_order */ #include <asm/pgalloc.h> #include <asm/uaccess.h> #include <asm/tlbflush.h> /* for purge_tlb_*() macros */ static struct proc_dir_entry * proc_gsc_root __read_mostly = NULL; static unsigned long pcxl_used_bytes __read_mostly = 0; static unsigned long pcxl_used_pages __read_mostly = 0; extern unsigned long pcxl_dma_start; /* Start of pcxl dma mapping area */ static spinlock_t pcxl_res_lock; static char *pcxl_res_map; static int pcxl_res_hint; static int pcxl_res_size; #ifdef DEBUG_PCXL_RESOURCE #define DBG_RES(x...) printk(x) #else #define DBG_RES(x...) #endif /* ** Dump a hex representation of the resource map. */ #ifdef DUMP_RESMAP static void dump_resmap(void) { u_long *res_ptr = (unsigned long *)pcxl_res_map; u_long i = 0; printk("res_map: "); for(; i < (pcxl_res_size / sizeof(unsigned long)); ++i, ++res_ptr) printk("%08lx ", *res_ptr); printk("\n"); } #else static inline void dump_resmap(void) {;} #endif static int pa11_dma_supported( struct device *dev, u64 mask) { return 1; } static inline int map_pte_uncached(pte_t * pte, unsigned long vaddr, unsigned long size, unsigned long *paddr_ptr) { unsigned long end; unsigned long orig_vaddr = vaddr; vaddr &= ~PMD_MASK; end = vaddr + size; if (end > PMD_SIZE) end = PMD_SIZE; do { if (!pte_none(*pte)) printk(KERN_ERR "map_pte_uncached: page already exists\n"); set_pte(pte, __mk_pte(*paddr_ptr, PAGE_KERNEL_UNC)); purge_tlb_start(); pdtlb_kernel(orig_vaddr); purge_tlb_end(); vaddr += PAGE_SIZE; orig_vaddr += PAGE_SIZE; (*paddr_ptr) += PAGE_SIZE; pte++; } while (vaddr < end); return 0; } static inline int map_pmd_uncached(pmd_t * pmd, unsigned long vaddr, unsigned long size, unsigned long *paddr_ptr) { unsigned long end; unsigned long orig_vaddr = vaddr; vaddr &= ~PGDIR_MASK; end = vaddr + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { pte_t * pte = pte_alloc_kernel(pmd, vaddr); if (!pte) return -ENOMEM; if (map_pte_uncached(pte, orig_vaddr, end - vaddr, paddr_ptr)) return -ENOMEM; vaddr = (vaddr + PMD_SIZE) & PMD_MASK; orig_vaddr += PMD_SIZE; pmd++; } while (vaddr < end); return 0; } static inline int map_uncached_pages(unsigned long vaddr, unsigned long size, unsigned long paddr) { pgd_t * dir; unsigned long end = vaddr + size; dir = pgd_offset_k(vaddr); do { pmd_t *pmd; pmd = pmd_alloc(NULL, dir, vaddr); if (!pmd) return -ENOMEM; if (map_pmd_uncached(pmd, vaddr, end - vaddr, &paddr)) return -ENOMEM; vaddr = vaddr + PGDIR_SIZE; dir++; } while (vaddr && (vaddr < end)); return 0; } static inline void unmap_uncached_pte(pmd_t * pmd, unsigned long vaddr, unsigned long size) { pte_t * pte; unsigned long end; unsigned long orig_vaddr = vaddr; if (pmd_none(*pmd)) return; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return; } pte = pte_offset_map(pmd, vaddr); vaddr &= ~PMD_MASK; end = vaddr + size; if (end > PMD_SIZE) end = PMD_SIZE; do { pte_t page = *pte; pte_clear(&init_mm, vaddr, pte); purge_tlb_start(); pdtlb_kernel(orig_vaddr); purge_tlb_end(); vaddr += PAGE_SIZE; orig_vaddr += PAGE_SIZE; pte++; if (pte_none(page) || pte_present(page)) continue; printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n"); } while (vaddr < end); } static inline void unmap_uncached_pmd(pgd_t * dir, unsigned long vaddr, unsigned long size) { pmd_t * pmd; unsigned long end; unsigned long orig_vaddr = vaddr; if (pgd_none(*dir)) return; if (pgd_bad(*dir)) { pgd_ERROR(*dir); pgd_clear(dir); return; } pmd = pmd_offset(dir, vaddr); vaddr &= ~PGDIR_MASK; end = vaddr + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { unmap_uncached_pte(pmd, orig_vaddr, end - vaddr); vaddr = (vaddr + PMD_SIZE) & PMD_MASK; orig_vaddr += PMD_SIZE; pmd++; } while (vaddr < end); } static void unmap_uncached_pages(unsigned long vaddr, unsigned long size) { pgd_t * dir; unsigned long end = vaddr + size; dir = pgd_offset_k(vaddr); do { unmap_uncached_pmd(dir, vaddr, end - vaddr); vaddr = vaddr + PGDIR_SIZE; dir++; } while (vaddr && (vaddr < end)); } #define PCXL_SEARCH_LOOP(idx, mask, size) \ for(; res_ptr < res_end; ++res_ptr) \ { \ if(0 == ((*res_ptr) & mask)) { \ *res_ptr |= mask; \ idx = (int)((u_long)res_ptr - (u_long)pcxl_res_map); \ pcxl_res_hint = idx + (size >> 3); \ goto resource_found; \ } \ } #define PCXL_FIND_FREE_MAPPING(idx, mask, size) { \ u##size *res_ptr = (u##size *)&(pcxl_res_map[pcxl_res_hint & ~((size >> 3) - 1)]); \ u##size *res_end = (u##size *)&pcxl_res_map[pcxl_res_size]; \ PCXL_SEARCH_LOOP(idx, mask, size); \ res_ptr = (u##size *)&pcxl_res_map[0]; \ PCXL_SEARCH_LOOP(idx, mask, size); \ } unsigned long pcxl_alloc_range(size_t size) { int res_idx; u_long mask, flags; unsigned int pages_needed = size >> PAGE_SHIFT; mask = (u_long) -1L; mask >>= BITS_PER_LONG - pages_needed; DBG_RES("pcxl_alloc_range() size: %d pages_needed %d pages_mask 0x%08lx\n", size, pages_needed, mask); spin_lock_irqsave(&pcxl_res_lock, flags); if(pages_needed <= 8) { PCXL_FIND_FREE_MAPPING(res_idx, mask, 8); } else if(pages_needed <= 16) { PCXL_FIND_FREE_MAPPING(res_idx, mask, 16); } else if(pages_needed <= 32) { PCXL_FIND_FREE_MAPPING(res_idx, mask, 32); } else { panic("%s: pcxl_alloc_range() Too many pages to map.\n", __FILE__); } dump_resmap(); panic("%s: pcxl_alloc_range() out of dma mapping resources\n", __FILE__); resource_found: DBG_RES("pcxl_alloc_range() res_idx %d mask 0x%08lx res_hint: %d\n", res_idx, mask, pcxl_res_hint); pcxl_used_pages += pages_needed; pcxl_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1); spin_unlock_irqrestore(&pcxl_res_lock, flags); dump_resmap(); /* ** return the corresponding vaddr in the pcxl dma map */ return (pcxl_dma_start + (res_idx << (PAGE_SHIFT + 3))); } #define PCXL_FREE_MAPPINGS(idx, m, size) \ u##size *res_ptr = (u##size *)&(pcxl_res_map[(idx) + (((size >> 3) - 1) & (~((size >> 3) - 1)))]); \ /* BUG_ON((*res_ptr & m) != m); */ \ *res_ptr &= ~m; /* ** clear bits in the pcxl resource map */ static void pcxl_free_range(unsigned long vaddr, size_t size) { u_long mask, flags; unsigned int res_idx = (vaddr - pcxl_dma_start) >> (PAGE_SHIFT + 3); unsigned int pages_mapped = size >> PAGE_SHIFT; mask = (u_long) -1L; mask >>= BITS_PER_LONG - pages_mapped; DBG_RES("pcxl_free_range() res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n", res_idx, size, pages_mapped, mask); spin_lock_irqsave(&pcxl_res_lock, flags); if(pages_mapped <= 8) { PCXL_FREE_MAPPINGS(res_idx, mask, 8); } else if(pages_mapped <= 16) { PCXL_FREE_MAPPINGS(res_idx, mask, 16); } else if(pages_mapped <= 32) { PCXL_FREE_MAPPINGS(res_idx, mask, 32); } else { panic("%s: pcxl_free_range() Too many pages to unmap.\n", __FILE__); } pcxl_used_pages -= (pages_mapped ? pages_mapped : 1); pcxl_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1); spin_unlock_irqrestore(&pcxl_res_lock, flags); dump_resmap(); } static int proc_pcxl_dma_show(struct seq_file *m, void *v) { #if 0 u_long i = 0; unsigned long *res_ptr = (u_long *)pcxl_res_map; #endif unsigned long total_pages = pcxl_res_size << 3; /* 8 bits per byte */ seq_printf(m, "\nDMA Mapping Area size : %d bytes (%ld pages)\n", PCXL_DMA_MAP_SIZE, total_pages); seq_printf(m, "Resource bitmap : %d bytes\n", pcxl_res_size); seq_puts(m, " total: free: used: % used:\n"); seq_printf(m, "blocks %8d %8ld %8ld %8ld%%\n", pcxl_res_size, pcxl_res_size - pcxl_used_bytes, pcxl_used_bytes, (pcxl_used_bytes * 100) / pcxl_res_size); seq_printf(m, "pages %8ld %8ld %8ld %8ld%%\n", total_pages, total_pages - pcxl_used_pages, pcxl_used_pages, (pcxl_used_pages * 100 / total_pages)); #if 0 seq_puts(m, "\nResource bitmap:"); for(; i < (pcxl_res_size / sizeof(u_long)); ++i, ++res_ptr) { if ((i & 7) == 0) seq_puts(m,"\n "); seq_printf(m, "%s %08lx", buf, *res_ptr); } #endif seq_putc(m, '\n'); return 0; } static int proc_pcxl_dma_open(struct inode *inode, struct file *file) { return single_open(file, proc_pcxl_dma_show, NULL); } static const struct file_operations proc_pcxl_dma_ops = { .owner = THIS_MODULE, .open = proc_pcxl_dma_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init pcxl_dma_init(void) { if (pcxl_dma_start == 0) return 0; spin_lock_init(&pcxl_res_lock); pcxl_res_size = PCXL_DMA_MAP_SIZE >> (PAGE_SHIFT + 3); pcxl_res_hint = 0; pcxl_res_map = (char *)__get_free_pages(GFP_KERNEL, get_order(pcxl_res_size)); memset(pcxl_res_map, 0, pcxl_res_size); proc_gsc_root = proc_mkdir("gsc", NULL); if (!proc_gsc_root) printk(KERN_WARNING "pcxl_dma_init: Unable to create gsc /proc dir entry\n"); else { struct proc_dir_entry* ent; ent = create_proc_entry("pcxl_dma", 0, proc_gsc_root); if (ent) ent->proc_fops = &proc_pcxl_dma_ops; else printk(KERN_WARNING "pci-dma.c: Unable to create pcxl_dma /proc entry.\n"); } return 0; } __initcall(pcxl_dma_init); static void * pa11_dma_alloc_consistent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { unsigned long vaddr; unsigned long paddr; int order; order = get_order(size); size = 1 << (order + PAGE_SHIFT); vaddr = pcxl_alloc_range(size); paddr = __get_free_pages(flag, order); flush_kernel_dcache_range(paddr, size); paddr = __pa(paddr); map_uncached_pages(vaddr, size, paddr); *dma_handle = (dma_addr_t) paddr; #if 0 /* This probably isn't needed to support EISA cards. ** ISA cards will certainly only support 24-bit DMA addressing. ** Not clear if we can, want, or need to support ISA. */ if (!dev || *dev->coherent_dma_mask < 0xffffffff) gfp |= GFP_DMA; #endif return (void *)vaddr; } static void pa11_dma_free_consistent (struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { int order; order = get_order(size); size = 1 << (order + PAGE_SHIFT); unmap_uncached_pages((unsigned long)vaddr, size); pcxl_free_range((unsigned long)vaddr, size); free_pages((unsigned long)__va(dma_handle), order); } static dma_addr_t pa11_dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction) { if (direction == DMA_NONE) { printk(KERN_ERR "pa11_dma_map_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0)); BUG(); } flush_kernel_dcache_range((unsigned long) addr, size); return virt_to_phys(addr); } static void pa11_dma_unmap_single(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { if (direction == DMA_NONE) { printk(KERN_ERR "pa11_dma_unmap_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0)); BUG(); } if (direction == DMA_TO_DEVICE) return; /* * For PCI_DMA_FROMDEVICE this flush is not necessary for the * simple map/unmap case. However, it IS necessary if if * pci_dma_sync_single_* has been called and the buffer reused. */ flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle), size); return; } static int pa11_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction) { int i; if (direction == DMA_NONE) BUG(); for (i = 0; i < nents; i++, sglist++ ) { unsigned long vaddr = sg_virt_addr(sglist); sg_dma_address(sglist) = (dma_addr_t) virt_to_phys(vaddr); sg_dma_len(sglist) = sglist->length; flush_kernel_dcache_range(vaddr, sglist->length); } return nents; } static void pa11_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction) { int i; if (direction == DMA_NONE) BUG(); if (direction == DMA_TO_DEVICE) return; /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */ for (i = 0; i < nents; i++, sglist++ ) flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length); return; } static void pa11_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { if (direction == DMA_NONE) BUG(); flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size); } static void pa11_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { if (direction == DMA_NONE) BUG(); flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size); } static void pa11_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction) { int i; /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */ for (i = 0; i < nents; i++, sglist++ ) flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length); } static void pa11_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction) { int i; /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */ for (i = 0; i < nents; i++, sglist++ ) flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length); } struct hppa_dma_ops pcxl_dma_ops = { .dma_supported = pa11_dma_supported, .alloc_consistent = pa11_dma_alloc_consistent, .alloc_noncoherent = pa11_dma_alloc_consistent, .free_consistent = pa11_dma_free_consistent, .map_single = pa11_dma_map_single, .unmap_single = pa11_dma_unmap_single, .map_sg = pa11_dma_map_sg, .unmap_sg = pa11_dma_unmap_sg, .dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu, .dma_sync_single_for_device = pa11_dma_sync_single_for_device, .dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu, .dma_sync_sg_for_device = pa11_dma_sync_sg_for_device, }; static void *fail_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { return NULL; } static void *pa11_dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { void *addr; addr = (void *)__get_free_pages(flag, get_order(size)); if (addr) *dma_handle = (dma_addr_t)virt_to_phys(addr); return addr; } static void pa11_dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, dma_addr_t iova) { free_pages((unsigned long)vaddr, get_order(size)); return; } struct hppa_dma_ops pcx_dma_ops = { .dma_supported = pa11_dma_supported, .alloc_consistent = fail_alloc_consistent, .alloc_noncoherent = pa11_dma_alloc_noncoherent, .free_consistent = pa11_dma_free_noncoherent, .map_single = pa11_dma_map_single, .unmap_single = pa11_dma_unmap_single, .map_sg = pa11_dma_map_sg, .unmap_sg = pa11_dma_unmap_sg, .dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu, .dma_sync_single_for_device = pa11_dma_sync_single_for_device, .dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu, .dma_sync_sg_for_device = pa11_dma_sync_sg_for_device, };