/* * Optimized memory copy routines. * * Copyright (C) 2004 Randolph Chung <tausq@debian.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Portions derived from the GNU C Library * Copyright (C) 1991, 1997, 2003 Free Software Foundation, Inc. * * Several strategies are tried to try to get the best performance for various * conditions. In the optimal case, we copy 64-bytes in an unrolled loop using * fp regs. This is followed by loops that copy 32- or 16-bytes at a time using * general registers. Unaligned copies are handled either by aligning the * destination and then using shift-and-write method, or in a few cases by * falling back to a byte-at-a-time copy. * * I chose to implement this in C because it is easier to maintain and debug, * and in my experiments it appears that the C code generated by gcc (3.3/3.4 * at the time of writing) is fairly optimal. Unfortunately some of the * semantics of the copy routine (exception handling) is difficult to express * in C, so we have to play some tricks to get it to work. * * All the loads and stores are done via explicit asm() code in order to use * the right space registers. * * Testing with various alignments and buffer sizes shows that this code is * often >10x faster than a simple byte-at-a-time copy, even for strangely * aligned operands. It is interesting to note that the glibc version * of memcpy (written in C) is actually quite fast already. This routine is * able to beat it by 30-40% for aligned copies because of the loop unrolling, * but in some cases the glibc version is still slightly faster. This lends * more credibility that gcc can generate very good code as long as we are * careful. * * TODO: * - cache prefetching needs more experimentation to get optimal settings * - try not to use the post-increment address modifiers; they create additional * interlocks * - replace byte-copy loops with stybs sequences */ #ifdef __KERNEL__ #include <linux/module.h> #include <linux/compiler.h> #include <asm/uaccess.h> #define s_space "%%sr1" #define d_space "%%sr2" #else #include "memcpy.h" #define s_space "%%sr0" #define d_space "%%sr0" #define pa_memcpy new2_copy #endif DECLARE_PER_CPU(struct exception_data, exception_data); #define preserve_branch(label) do { \ volatile int dummy; \ /* The following branch is never taken, it's just here to */ \ /* prevent gcc from optimizing away our exception code. */ \ if (unlikely(dummy != dummy)) \ goto label; \ } while (0) #define get_user_space() (segment_eq(get_fs(), KERNEL_DS) ? 0 : mfsp(3)) #define get_kernel_space() (0) #define MERGE(w0, sh_1, w1, sh_2) ({ \ unsigned int _r; \ asm volatile ( \ "mtsar %3\n" \ "shrpw %1, %2, %%sar, %0\n" \ : "=r"(_r) \ : "r"(w0), "r"(w1), "r"(sh_2) \ ); \ _r; \ }) #define THRESHOLD 16 #ifdef DEBUG_MEMCPY #define DPRINTF(fmt, args...) do { printk(KERN_DEBUG "%s:%d:%s ", __FILE__, __LINE__, __FUNCTION__ ); printk(KERN_DEBUG fmt, ##args ); } while (0) #else #define DPRINTF(fmt, args...) #endif #define def_load_ai_insn(_insn,_sz,_tt,_s,_a,_t,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn ",ma " #_sz "(" _s ",%1), %0\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : _tt(_t), "+r"(_a) \ : \ : "r8") #define def_store_ai_insn(_insn,_sz,_tt,_s,_a,_t,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn ",ma %1, " #_sz "(" _s ",%0)\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : "+r"(_a) \ : _tt(_t) \ : "r8") #define ldbma(_s, _a, _t, _e) def_load_ai_insn(ldbs,1,"=r",_s,_a,_t,_e) #define stbma(_s, _t, _a, _e) def_store_ai_insn(stbs,1,"r",_s,_a,_t,_e) #define ldwma(_s, _a, _t, _e) def_load_ai_insn(ldw,4,"=r",_s,_a,_t,_e) #define stwma(_s, _t, _a, _e) def_store_ai_insn(stw,4,"r",_s,_a,_t,_e) #define flddma(_s, _a, _t, _e) def_load_ai_insn(fldd,8,"=f",_s,_a,_t,_e) #define fstdma(_s, _t, _a, _e) def_store_ai_insn(fstd,8,"f",_s,_a,_t,_e) #define def_load_insn(_insn,_tt,_s,_o,_a,_t,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn " " #_o "(" _s ",%1), %0\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : _tt(_t) \ : "r"(_a) \ : "r8") #define def_store_insn(_insn,_tt,_s,_t,_o,_a,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn " %0, " #_o "(" _s ",%1)\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : \ : _tt(_t), "r"(_a) \ : "r8") #define ldw(_s,_o,_a,_t,_e) def_load_insn(ldw,"=r",_s,_o,_a,_t,_e) #define stw(_s,_t,_o,_a,_e) def_store_insn(stw,"r",_s,_t,_o,_a,_e) #ifdef CONFIG_PREFETCH extern inline void prefetch_src(const void *addr) { __asm__("ldw 0(" s_space ",%0), %%r0" : : "r" (addr)); } extern inline void prefetch_dst(const void *addr) { __asm__("ldd 0(" d_space ",%0), %%r0" : : "r" (addr)); } #else #define prefetch_src(addr) do { } while(0) #define prefetch_dst(addr) do { } while(0) #endif /* Copy from a not-aligned src to an aligned dst, using shifts. Handles 4 words * per loop. This code is derived from glibc. */ static inline unsigned long copy_dstaligned(unsigned long dst, unsigned long src, unsigned long len, unsigned long o_dst, unsigned long o_src, unsigned long o_len) { /* gcc complains that a2 and a3 may be uninitialized, but actually * they cannot be. Initialize a2/a3 to shut gcc up. */ register unsigned int a0, a1, a2 = 0, a3 = 0; int sh_1, sh_2; struct exception_data *d; /* prefetch_src((const void *)src); */ /* Calculate how to shift a word read at the memory operation aligned srcp to make it aligned for copy. */ sh_1 = 8 * (src % sizeof(unsigned int)); sh_2 = 8 * sizeof(unsigned int) - sh_1; /* Make src aligned by rounding it down. */ src &= -sizeof(unsigned int); switch (len % 4) { case 2: /* a1 = ((unsigned int *) src)[0]; a2 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a1, cda_ldw_exc); ldw(s_space, 4, src, a2, cda_ldw_exc); src -= 1 * sizeof(unsigned int); dst -= 3 * sizeof(unsigned int); len += 2; goto do1; case 3: /* a0 = ((unsigned int *) src)[0]; a1 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a0, cda_ldw_exc); ldw(s_space, 4, src, a1, cda_ldw_exc); src -= 0 * sizeof(unsigned int); dst -= 2 * sizeof(unsigned int); len += 1; goto do2; case 0: if (len == 0) return 0; /* a3 = ((unsigned int *) src)[0]; a0 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a3, cda_ldw_exc); ldw(s_space, 4, src, a0, cda_ldw_exc); src -=-1 * sizeof(unsigned int); dst -= 1 * sizeof(unsigned int); len += 0; goto do3; case 1: /* a2 = ((unsigned int *) src)[0]; a3 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a2, cda_ldw_exc); ldw(s_space, 4, src, a3, cda_ldw_exc); src -=-2 * sizeof(unsigned int); dst -= 0 * sizeof(unsigned int); len -= 1; if (len == 0) goto do0; goto do4; /* No-op. */ } do { /* prefetch_src((const void *)(src + 4 * sizeof(unsigned int))); */ do4: /* a0 = ((unsigned int *) src)[0]; */ ldw(s_space, 0, src, a0, cda_ldw_exc); /* ((unsigned int *) dst)[0] = MERGE (a2, sh_1, a3, sh_2); */ stw(d_space, MERGE (a2, sh_1, a3, sh_2), 0, dst, cda_stw_exc); do3: /* a1 = ((unsigned int *) src)[1]; */ ldw(s_space, 4, src, a1, cda_ldw_exc); /* ((unsigned int *) dst)[1] = MERGE (a3, sh_1, a0, sh_2); */ stw(d_space, MERGE (a3, sh_1, a0, sh_2), 4, dst, cda_stw_exc); do2: /* a2 = ((unsigned int *) src)[2]; */ ldw(s_space, 8, src, a2, cda_ldw_exc); /* ((unsigned int *) dst)[2] = MERGE (a0, sh_1, a1, sh_2); */ stw(d_space, MERGE (a0, sh_1, a1, sh_2), 8, dst, cda_stw_exc); do1: /* a3 = ((unsigned int *) src)[3]; */ ldw(s_space, 12, src, a3, cda_ldw_exc); /* ((unsigned int *) dst)[3] = MERGE (a1, sh_1, a2, sh_2); */ stw(d_space, MERGE (a1, sh_1, a2, sh_2), 12, dst, cda_stw_exc); src += 4 * sizeof(unsigned int); dst += 4 * sizeof(unsigned int); len -= 4; } while (len != 0); do0: /* ((unsigned int *) dst)[0] = MERGE (a2, sh_1, a3, sh_2); */ stw(d_space, MERGE (a2, sh_1, a3, sh_2), 0, dst, cda_stw_exc); preserve_branch(handle_load_error); preserve_branch(handle_store_error); return 0; handle_load_error: __asm__ __volatile__ ("cda_ldw_exc:\n"); d = &__get_cpu_var(exception_data); DPRINTF("cda_ldw_exc: o_len=%lu fault_addr=%lu o_src=%lu ret=%lu\n", o_len, d->fault_addr, o_src, o_len - d->fault_addr + o_src); return o_len * 4 - d->fault_addr + o_src; handle_store_error: __asm__ __volatile__ ("cda_stw_exc:\n"); d = &__get_cpu_var(exception_data); DPRINTF("cda_stw_exc: o_len=%lu fault_addr=%lu o_dst=%lu ret=%lu\n", o_len, d->fault_addr, o_dst, o_len - d->fault_addr + o_dst); return o_len * 4 - d->fault_addr + o_dst; } /* Returns 0 for success, otherwise, returns number of bytes not transferred. */ unsigned long pa_memcpy(void *dstp, const void *srcp, unsigned long len) { register unsigned long src, dst, t1, t2, t3; register unsigned char *pcs, *pcd; register unsigned int *pws, *pwd; register double *pds, *pdd; unsigned long ret = 0; unsigned long o_dst, o_src, o_len; struct exception_data *d; src = (unsigned long)srcp; dst = (unsigned long)dstp; pcs = (unsigned char *)srcp; pcd = (unsigned char *)dstp; o_dst = dst; o_src = src; o_len = len; /* prefetch_src((const void *)srcp); */ if (len < THRESHOLD) goto byte_copy; /* Check alignment */ t1 = (src ^ dst); if (unlikely(t1 & (sizeof(double)-1))) goto unaligned_copy; /* src and dst have same alignment. */ /* Copy bytes till we are double-aligned. */ t2 = src & (sizeof(double) - 1); if (unlikely(t2 != 0)) { t2 = sizeof(double) - t2; while (t2 && len) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); len--; stbma(d_space, t3, pcd, pmc_store_exc); t2--; } } pds = (double *)pcs; pdd = (double *)pcd; #if 0 /* Copy 8 doubles at a time */ while (len >= 8*sizeof(double)) { register double r1, r2, r3, r4, r5, r6, r7, r8; /* prefetch_src((char *)pds + L1_CACHE_BYTES); */ flddma(s_space, pds, r1, pmc_load_exc); flddma(s_space, pds, r2, pmc_load_exc); flddma(s_space, pds, r3, pmc_load_exc); flddma(s_space, pds, r4, pmc_load_exc); fstdma(d_space, r1, pdd, pmc_store_exc); fstdma(d_space, r2, pdd, pmc_store_exc); fstdma(d_space, r3, pdd, pmc_store_exc); fstdma(d_space, r4, pdd, pmc_store_exc); #if 0 if (L1_CACHE_BYTES <= 32) prefetch_src((char *)pds + L1_CACHE_BYTES); #endif flddma(s_space, pds, r5, pmc_load_exc); flddma(s_space, pds, r6, pmc_load_exc); flddma(s_space, pds, r7, pmc_load_exc); flddma(s_space, pds, r8, pmc_load_exc); fstdma(d_space, r5, pdd, pmc_store_exc); fstdma(d_space, r6, pdd, pmc_store_exc); fstdma(d_space, r7, pdd, pmc_store_exc); fstdma(d_space, r8, pdd, pmc_store_exc); len -= 8*sizeof(double); } #endif pws = (unsigned int *)pds; pwd = (unsigned int *)pdd; word_copy: while (len >= 8*sizeof(unsigned int)) { register unsigned int r1,r2,r3,r4,r5,r6,r7,r8; /* prefetch_src((char *)pws + L1_CACHE_BYTES); */ ldwma(s_space, pws, r1, pmc_load_exc); ldwma(s_space, pws, r2, pmc_load_exc); ldwma(s_space, pws, r3, pmc_load_exc); ldwma(s_space, pws, r4, pmc_load_exc); stwma(d_space, r1, pwd, pmc_store_exc); stwma(d_space, r2, pwd, pmc_store_exc); stwma(d_space, r3, pwd, pmc_store_exc); stwma(d_space, r4, pwd, pmc_store_exc); ldwma(s_space, pws, r5, pmc_load_exc); ldwma(s_space, pws, r6, pmc_load_exc); ldwma(s_space, pws, r7, pmc_load_exc); ldwma(s_space, pws, r8, pmc_load_exc); stwma(d_space, r5, pwd, pmc_store_exc); stwma(d_space, r6, pwd, pmc_store_exc); stwma(d_space, r7, pwd, pmc_store_exc); stwma(d_space, r8, pwd, pmc_store_exc); len -= 8*sizeof(unsigned int); } while (len >= 4*sizeof(unsigned int)) { register unsigned int r1,r2,r3,r4; ldwma(s_space, pws, r1, pmc_load_exc); ldwma(s_space, pws, r2, pmc_load_exc); ldwma(s_space, pws, r3, pmc_load_exc); ldwma(s_space, pws, r4, pmc_load_exc); stwma(d_space, r1, pwd, pmc_store_exc); stwma(d_space, r2, pwd, pmc_store_exc); stwma(d_space, r3, pwd, pmc_store_exc); stwma(d_space, r4, pwd, pmc_store_exc); len -= 4*sizeof(unsigned int); } pcs = (unsigned char *)pws; pcd = (unsigned char *)pwd; byte_copy: while (len) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); stbma(d_space, t3, pcd, pmc_store_exc); len--; } return 0; unaligned_copy: /* possibly we are aligned on a word, but not on a double... */ if (likely(t1 & (sizeof(unsigned int)-1)) == 0) { t2 = src & (sizeof(unsigned int) - 1); if (unlikely(t2 != 0)) { t2 = sizeof(unsigned int) - t2; while (t2) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); stbma(d_space, t3, pcd, pmc_store_exc); len--; t2--; } } pws = (unsigned int *)pcs; pwd = (unsigned int *)pcd; goto word_copy; } /* Align the destination. */ if (unlikely((dst & (sizeof(unsigned int) - 1)) != 0)) { t2 = sizeof(unsigned int) - (dst & (sizeof(unsigned int) - 1)); while (t2) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); stbma(d_space, t3, pcd, pmc_store_exc); len--; t2--; } dst = (unsigned long)pcd; src = (unsigned long)pcs; } ret = copy_dstaligned(dst, src, len / sizeof(unsigned int), o_dst, o_src, o_len); if (ret) return ret; pcs += (len & -sizeof(unsigned int)); pcd += (len & -sizeof(unsigned int)); len %= sizeof(unsigned int); preserve_branch(handle_load_error); preserve_branch(handle_store_error); goto byte_copy; handle_load_error: __asm__ __volatile__ ("pmc_load_exc:\n"); d = &__get_cpu_var(exception_data); DPRINTF("pmc_load_exc: o_len=%lu fault_addr=%lu o_src=%lu ret=%lu\n", o_len, d->fault_addr, o_src, o_len - d->fault_addr + o_src); return o_len - d->fault_addr + o_src; handle_store_error: __asm__ __volatile__ ("pmc_store_exc:\n"); d = &__get_cpu_var(exception_data); DPRINTF("pmc_store_exc: o_len=%lu fault_addr=%lu o_dst=%lu ret=%lu\n", o_len, d->fault_addr, o_dst, o_len - d->fault_addr + o_dst); return o_len - d->fault_addr + o_dst; } #ifdef __KERNEL__ unsigned long copy_to_user(void __user *dst, const void *src, unsigned long len) { mtsp(get_kernel_space(), 1); mtsp(get_user_space(), 2); return pa_memcpy((void __force *)dst, src, len); } unsigned long copy_from_user(void *dst, const void __user *src, unsigned long len) { mtsp(get_user_space(), 1); mtsp(get_kernel_space(), 2); return pa_memcpy(dst, (void __force *)src, len); } unsigned long copy_in_user(void __user *dst, const void __user *src, unsigned long len) { mtsp(get_user_space(), 1); mtsp(get_user_space(), 2); return pa_memcpy((void __force *)dst, (void __force *)src, len); } void * memcpy(void * dst,const void *src, size_t count) { mtsp(get_kernel_space(), 1); mtsp(get_kernel_space(), 2); pa_memcpy(dst, src, count); return dst; } EXPORT_SYMBOL(copy_to_user); EXPORT_SYMBOL(copy_from_user); EXPORT_SYMBOL(copy_in_user); EXPORT_SYMBOL(memcpy); #endif