/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright IBM Corp. 2007 * * Authors: Hollis Blanchard <hollisb@us.ibm.com> * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> */ #include <linux/errno.h> #include <linux/err.h> #include <linux/kvm_host.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/fs.h> #include <asm/cputable.h> #include <asm/uaccess.h> #include <asm/kvm_ppc.h> #include <asm/tlbflush.h> gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) { return gfn; } int kvm_cpu_has_interrupt(struct kvm_vcpu *v) { return !!(v->arch.pending_exceptions); } int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) { return !(v->arch.msr & MSR_WE); } int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) { enum emulation_result er; int r; er = kvmppc_emulate_instruction(run, vcpu); switch (er) { case EMULATE_DONE: /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_GUEST_NV; break; case EMULATE_DO_MMIO: run->exit_reason = KVM_EXIT_MMIO; /* We must reload nonvolatiles because "update" load/store * instructions modify register state. */ /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_HOST_NV; break; case EMULATE_FAIL: /* XXX Deliver Program interrupt to guest. */ printk(KERN_EMERG "%s: emulation failed (%08x)\n", __func__, vcpu->arch.last_inst); r = RESUME_HOST; break; default: BUG(); } return r; } void kvm_arch_hardware_enable(void *garbage) { } void kvm_arch_hardware_disable(void *garbage) { } int kvm_arch_hardware_setup(void) { return 0; } void kvm_arch_hardware_unsetup(void) { } void kvm_arch_check_processor_compat(void *rtn) { int r; if (strcmp(cur_cpu_spec->platform, "ppc440") == 0) r = 0; else r = -ENOTSUPP; *(int *)rtn = r; } struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm; kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); if (!kvm) return ERR_PTR(-ENOMEM); return kvm; } static void kvmppc_free_vcpus(struct kvm *kvm) { unsigned int i; for (i = 0; i < KVM_MAX_VCPUS; ++i) { if (kvm->vcpus[i]) { kvm_arch_vcpu_free(kvm->vcpus[i]); kvm->vcpus[i] = NULL; } } } void kvm_arch_destroy_vm(struct kvm *kvm) { kvmppc_free_vcpus(kvm); kvm_free_physmem(kvm); kfree(kvm); } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_USER_MEMORY: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } int kvm_arch_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { return 0; } void kvm_arch_flush_shadow(struct kvm *kvm) { } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; int err; vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) { err = -ENOMEM; goto out; } err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; return vcpu; free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu); out: return ERR_PTR(err); } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { kvm_arch_vcpu_free(vcpu); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { unsigned int priority = exception_priority[BOOKE_INTERRUPT_DECREMENTER]; return test_bit(priority, &vcpu->arch.pending_exceptions); } static void kvmppc_decrementer_func(unsigned long data) { struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; kvmppc_queue_exception(vcpu, BOOKE_INTERRUPT_DECREMENTER); if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { setup_timer(&vcpu->arch.dec_timer, kvmppc_decrementer_func, (unsigned long)vcpu); return 0; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { } /* Note: clearing MSR[DE] just means that the debug interrupt will not be * delivered *immediately*. Instead, it simply sets the appropriate DBSR bits. * If those DBSR bits are still set when MSR[DE] is re-enabled, the interrupt * will be delivered as an "imprecise debug event" (which is indicated by * DBSR[IDE]. */ static void kvmppc_disable_debug_interrupts(void) { mtmsr(mfmsr() & ~MSR_DE); } static void kvmppc_restore_host_debug_state(struct kvm_vcpu *vcpu) { kvmppc_disable_debug_interrupts(); mtspr(SPRN_IAC1, vcpu->arch.host_iac[0]); mtspr(SPRN_IAC2, vcpu->arch.host_iac[1]); mtspr(SPRN_IAC3, vcpu->arch.host_iac[2]); mtspr(SPRN_IAC4, vcpu->arch.host_iac[3]); mtspr(SPRN_DBCR1, vcpu->arch.host_dbcr1); mtspr(SPRN_DBCR2, vcpu->arch.host_dbcr2); mtspr(SPRN_DBCR0, vcpu->arch.host_dbcr0); mtmsr(vcpu->arch.host_msr); } static void kvmppc_load_guest_debug_registers(struct kvm_vcpu *vcpu) { struct kvm_guest_debug *dbg = &vcpu->guest_debug; u32 dbcr0 = 0; vcpu->arch.host_msr = mfmsr(); kvmppc_disable_debug_interrupts(); /* Save host debug register state. */ vcpu->arch.host_iac[0] = mfspr(SPRN_IAC1); vcpu->arch.host_iac[1] = mfspr(SPRN_IAC2); vcpu->arch.host_iac[2] = mfspr(SPRN_IAC3); vcpu->arch.host_iac[3] = mfspr(SPRN_IAC4); vcpu->arch.host_dbcr0 = mfspr(SPRN_DBCR0); vcpu->arch.host_dbcr1 = mfspr(SPRN_DBCR1); vcpu->arch.host_dbcr2 = mfspr(SPRN_DBCR2); /* set registers up for guest */ if (dbg->bp[0]) { mtspr(SPRN_IAC1, dbg->bp[0]); dbcr0 |= DBCR0_IAC1 | DBCR0_IDM; } if (dbg->bp[1]) { mtspr(SPRN_IAC2, dbg->bp[1]); dbcr0 |= DBCR0_IAC2 | DBCR0_IDM; } if (dbg->bp[2]) { mtspr(SPRN_IAC3, dbg->bp[2]); dbcr0 |= DBCR0_IAC3 | DBCR0_IDM; } if (dbg->bp[3]) { mtspr(SPRN_IAC4, dbg->bp[3]); dbcr0 |= DBCR0_IAC4 | DBCR0_IDM; } mtspr(SPRN_DBCR0, dbcr0); mtspr(SPRN_DBCR1, 0); mtspr(SPRN_DBCR2, 0); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { int i; if (vcpu->guest_debug.enabled) kvmppc_load_guest_debug_registers(vcpu); /* Mark every guest entry in the shadow TLB entry modified, so that they * will all be reloaded on the next vcpu run (instead of being * demand-faulted). */ for (i = 0; i <= tlb_44x_hwater; i++) kvmppc_tlbe_set_modified(vcpu, i); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { if (vcpu->guest_debug.enabled) kvmppc_restore_host_debug_state(vcpu); /* Don't leave guest TLB entries resident when being de-scheduled. */ /* XXX It would be nice to differentiate between heavyweight exit and * sched_out here, since we could avoid the TLB flush for heavyweight * exits. */ _tlbia(); } int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) { int i; vcpu->guest_debug.enabled = dbg->enabled; if (vcpu->guest_debug.enabled) { for (i=0; i < ARRAY_SIZE(vcpu->guest_debug.bp); i++) { if (dbg->breakpoints[i].enabled) vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address; else vcpu->guest_debug.bp[i] = 0; } } return 0; } static void kvmppc_complete_dcr_load(struct kvm_vcpu *vcpu, struct kvm_run *run) { u32 *gpr = &vcpu->arch.gpr[vcpu->arch.io_gpr]; *gpr = run->dcr.data; } static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run) { u32 *gpr = &vcpu->arch.gpr[vcpu->arch.io_gpr]; if (run->mmio.len > sizeof(*gpr)) { printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); return; } if (vcpu->arch.mmio_is_bigendian) { switch (run->mmio.len) { case 4: *gpr = *(u32 *)run->mmio.data; break; case 2: *gpr = *(u16 *)run->mmio.data; break; case 1: *gpr = *(u8 *)run->mmio.data; break; } } else { /* Convert BE data from userland back to LE. */ switch (run->mmio.len) { case 4: *gpr = ld_le32((u32 *)run->mmio.data); break; case 2: *gpr = ld_le16((u16 *)run->mmio.data); break; case 1: *gpr = *(u8 *)run->mmio.data; break; } } } int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_bigendian) { if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 0; vcpu->arch.io_gpr = rt; vcpu->arch.mmio_is_bigendian = is_bigendian; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 0; return EMULATE_DO_MMIO; } int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, u32 val, unsigned int bytes, int is_bigendian) { void *data = run->mmio.data; if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 1; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 1; /* Store the value at the lowest bytes in 'data'. */ if (is_bigendian) { switch (bytes) { case 4: *(u32 *)data = val; break; case 2: *(u16 *)data = val; break; case 1: *(u8 *)data = val; break; } } else { /* Store LE value into 'data'. */ switch (bytes) { case 4: st_le32(data, val); break; case 2: st_le16(data, val); break; case 1: *(u8 *)data = val; break; } } return EMULATE_DO_MMIO; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) { int r; sigset_t sigsaved; vcpu_load(vcpu); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (vcpu->mmio_needed) { if (!vcpu->mmio_is_write) kvmppc_complete_mmio_load(vcpu, run); vcpu->mmio_needed = 0; } else if (vcpu->arch.dcr_needed) { if (!vcpu->arch.dcr_is_write) kvmppc_complete_dcr_load(vcpu, run); vcpu->arch.dcr_needed = 0; } kvmppc_check_and_deliver_interrupts(vcpu); local_irq_disable(); kvm_guest_enter(); r = __kvmppc_vcpu_run(run, vcpu); kvm_guest_exit(); local_irq_enable(); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); vcpu_put(vcpu); return r; } int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { kvmppc_queue_exception(vcpu, BOOKE_INTERRUPT_EXTERNAL); if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } return 0; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof(irq))) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); break; } default: r = -EINVAL; } out: return r; } int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { return -ENOTSUPP; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { long r; switch (ioctl) { default: r = -EINVAL; } return r; } int kvm_arch_init(void *opaque) { return 0; } void kvm_arch_exit(void) { }