/* * c 2001 PPC 64 Team, IBM Corp * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/slab.h> #include <linux/vmalloc.h> #include <asm/uaccess.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <linux/mutex.h> #include <asm/cacheflush.h> #include "mmu_decl.h" static DEFINE_MUTEX(imlist_mutex); struct vm_struct * imlist = NULL; static int get_free_im_addr(unsigned long size, unsigned long *im_addr) { unsigned long addr; struct vm_struct **p, *tmp; addr = ioremap_bot; for (p = &imlist; (tmp = *p) ; p = &tmp->next) { if (size + addr < (unsigned long) tmp->addr) break; if ((unsigned long)tmp->addr >= ioremap_bot) addr = tmp->size + (unsigned long) tmp->addr; if (addr >= IMALLOC_END-size) return 1; } *im_addr = addr; return 0; } /* Return whether the region described by v_addr and size is a subset * of the region described by parent */ static inline int im_region_is_subset(unsigned long v_addr, unsigned long size, struct vm_struct *parent) { return (int) (v_addr >= (unsigned long) parent->addr && v_addr < (unsigned long) parent->addr + parent->size && size < parent->size); } /* Return whether the region described by v_addr and size is a superset * of the region described by child */ static int im_region_is_superset(unsigned long v_addr, unsigned long size, struct vm_struct *child) { struct vm_struct parent; parent.addr = (void *) v_addr; parent.size = size; return im_region_is_subset((unsigned long) child->addr, child->size, &parent); } /* Return whether the region described by v_addr and size overlaps * the region described by vm. Overlapping regions meet the * following conditions: * 1) The regions share some part of the address space * 2) The regions aren't identical * 3) Neither region is a subset of the other */ static int im_region_overlaps(unsigned long v_addr, unsigned long size, struct vm_struct *vm) { if (im_region_is_superset(v_addr, size, vm)) return 0; return (v_addr + size > (unsigned long) vm->addr + vm->size && v_addr < (unsigned long) vm->addr + vm->size) || (v_addr < (unsigned long) vm->addr && v_addr + size > (unsigned long) vm->addr); } /* Determine imalloc status of region described by v_addr and size. * Can return one of the following: * IM_REGION_UNUSED - Entire region is unallocated in imalloc space. * IM_REGION_SUBSET - Region is a subset of a region that is already * allocated in imalloc space. * vm will be assigned to a ptr to the parent region. * IM_REGION_EXISTS - Exact region already allocated in imalloc space. * vm will be assigned to a ptr to the existing imlist * member. * IM_REGION_OVERLAPS - Region overlaps an allocated region in imalloc space. * IM_REGION_SUPERSET - Region is a superset of a region that is already * allocated in imalloc space. */ static int im_region_status(unsigned long v_addr, unsigned long size, struct vm_struct **vm) { struct vm_struct *tmp; for (tmp = imlist; tmp; tmp = tmp->next) if (v_addr < (unsigned long) tmp->addr + tmp->size) break; *vm = NULL; if (tmp) { if (im_region_overlaps(v_addr, size, tmp)) return IM_REGION_OVERLAP; *vm = tmp; if (im_region_is_subset(v_addr, size, tmp)) { /* Return with tmp pointing to superset */ return IM_REGION_SUBSET; } if (im_region_is_superset(v_addr, size, tmp)) { /* Return with tmp pointing to first subset */ return IM_REGION_SUPERSET; } else if (v_addr == (unsigned long) tmp->addr && size == tmp->size) { /* Return with tmp pointing to exact region */ return IM_REGION_EXISTS; } } return IM_REGION_UNUSED; } static struct vm_struct * split_im_region(unsigned long v_addr, unsigned long size, struct vm_struct *parent) { struct vm_struct *vm1 = NULL; struct vm_struct *vm2 = NULL; struct vm_struct *new_vm = NULL; vm1 = (struct vm_struct *) kmalloc(sizeof(*vm1), GFP_KERNEL); if (vm1 == NULL) { printk(KERN_ERR "%s() out of memory\n", __FUNCTION__); return NULL; } if (v_addr == (unsigned long) parent->addr) { /* Use existing parent vm_struct to represent child, allocate * new one for the remainder of parent range */ vm1->size = parent->size - size; vm1->addr = (void *) (v_addr + size); vm1->next = parent->next; parent->size = size; parent->next = vm1; new_vm = parent; } else if (v_addr + size == (unsigned long) parent->addr + parent->size) { /* Allocate new vm_struct to represent child, use existing * parent one for remainder of parent range */ vm1->size = size; vm1->addr = (void *) v_addr; vm1->next = parent->next; new_vm = vm1; parent->size -= size; parent->next = vm1; } else { /* Allocate two new vm_structs for the new child and * uppermost remainder, and use existing parent one for the * lower remainder of parent range */ vm2 = (struct vm_struct *) kmalloc(sizeof(*vm2), GFP_KERNEL); if (vm2 == NULL) { printk(KERN_ERR "%s() out of memory\n", __FUNCTION__); kfree(vm1); return NULL; } vm1->size = size; vm1->addr = (void *) v_addr; vm1->next = vm2; new_vm = vm1; vm2->size = ((unsigned long) parent->addr + parent->size) - (v_addr + size); vm2->addr = (void *) v_addr + size; vm2->next = parent->next; parent->size = v_addr - (unsigned long) parent->addr; parent->next = vm1; } return new_vm; } static struct vm_struct * __add_new_im_area(unsigned long req_addr, unsigned long size) { struct vm_struct **p, *tmp, *area; for (p = &imlist; (tmp = *p) ; p = &tmp->next) { if (req_addr + size <= (unsigned long)tmp->addr) break; } area = (struct vm_struct *) kmalloc(sizeof(*area), GFP_KERNEL); if (!area) return NULL; area->flags = 0; area->addr = (void *)req_addr; area->size = size; area->next = *p; *p = area; return area; } static struct vm_struct * __im_get_area(unsigned long req_addr, unsigned long size, int criteria) { struct vm_struct *tmp; int status; status = im_region_status(req_addr, size, &tmp); if ((criteria & status) == 0) { return NULL; } switch (status) { case IM_REGION_UNUSED: tmp = __add_new_im_area(req_addr, size); break; case IM_REGION_SUBSET: tmp = split_im_region(req_addr, size, tmp); break; case IM_REGION_EXISTS: /* Return requested region */ break; case IM_REGION_SUPERSET: /* Return first existing subset of requested region */ break; default: printk(KERN_ERR "%s() unexpected imalloc region status\n", __FUNCTION__); tmp = NULL; } return tmp; } struct vm_struct * im_get_free_area(unsigned long size) { struct vm_struct *area; unsigned long addr; mutex_lock(&imlist_mutex); if (get_free_im_addr(size, &addr)) { printk(KERN_ERR "%s() cannot obtain addr for size 0x%lx\n", __FUNCTION__, size); area = NULL; goto next_im_done; } area = __im_get_area(addr, size, IM_REGION_UNUSED); if (area == NULL) { printk(KERN_ERR "%s() cannot obtain area for addr 0x%lx size 0x%lx\n", __FUNCTION__, addr, size); } next_im_done: mutex_unlock(&imlist_mutex); return area; } struct vm_struct * im_get_area(unsigned long v_addr, unsigned long size, int criteria) { struct vm_struct *area; mutex_lock(&imlist_mutex); area = __im_get_area(v_addr, size, criteria); mutex_unlock(&imlist_mutex); return area; } void im_free(void * addr) { struct vm_struct **p, *tmp; if (!addr) return; if ((unsigned long) addr & ~PAGE_MASK) { printk(KERN_ERR "Trying to %s bad address (%p)\n", __FUNCTION__, addr); return; } mutex_lock(&imlist_mutex); for (p = &imlist ; (tmp = *p) ; p = &tmp->next) { if (tmp->addr == addr) { *p = tmp->next; unmap_vm_area(tmp); kfree(tmp); mutex_unlock(&imlist_mutex); return; } } mutex_unlock(&imlist_mutex); printk(KERN_ERR "Trying to %s nonexistent area (%p)\n", __FUNCTION__, addr); }