/* * Cell Broadband Engine OProfile Support * * (C) Copyright IBM Corporation 2006 * * Author: David Erb (djerb@us.ibm.com) * Modifications: * Carl Love <carll@us.ibm.com> * Maynard Johnson <maynardj@us.ibm.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/kthread.h> #include <linux/oprofile.h> #include <linux/percpu.h> #include <linux/smp.h> #include <linux/spinlock.h> #include <linux/timer.h> #include <asm/cell-pmu.h> #include <asm/cputable.h> #include <asm/firmware.h> #include <asm/io.h> #include <asm/oprofile_impl.h> #include <asm/processor.h> #include <asm/prom.h> #include <asm/ptrace.h> #include <asm/reg.h> #include <asm/rtas.h> #include <asm/system.h> #include "../platforms/cell/interrupt.h" #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */ #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */ #define NUM_THREADS 2 #define VIRT_CNTR_SW_TIME_NS 100000000 // 0.5 seconds struct pmc_cntrl_data { unsigned long vcntr; unsigned long evnts; unsigned long masks; unsigned long enabled; }; /* * ibm,cbe-perftools rtas parameters */ struct pm_signal { u16 cpu; /* Processor to modify */ u16 sub_unit; /* hw subunit this applies to (if applicable) */ u16 signal_group; /* Signal Group to Enable/Disable */ u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event * Bus Word(s) (bitmask) */ u8 bit; /* Trigger/Event bit (if applicable) */ }; /* * rtas call arguments */ enum { SUBFUNC_RESET = 1, SUBFUNC_ACTIVATE = 2, SUBFUNC_DEACTIVATE = 3, PASSTHRU_IGNORE = 0, PASSTHRU_ENABLE = 1, PASSTHRU_DISABLE = 2, }; struct pm_cntrl { u16 enable; u16 stop_at_max; u16 trace_mode; u16 freeze; u16 count_mode; }; static struct { u32 group_control; u32 debug_bus_control; struct pm_cntrl pm_cntrl; u32 pm07_cntrl[NR_PHYS_CTRS]; } pm_regs; #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12) #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4) #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8) #define GET_POLARITY(x) ((x & 0x00000002) >> 1) #define GET_COUNT_CYCLES(x) (x & 0x00000001) #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2) static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values); static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS]; /* Interpetation of hdw_thread: * 0 - even virtual cpus 0, 2, 4,... * 1 - odd virtual cpus 1, 3, 5, ... */ static u32 hdw_thread; static u32 virt_cntr_inter_mask; static struct timer_list timer_virt_cntr; /* pm_signal needs to be global since it is initialized in * cell_reg_setup at the time when the necessary information * is available. */ static struct pm_signal pm_signal[NR_PHYS_CTRS]; static int pm_rtas_token; static u32 reset_value[NR_PHYS_CTRS]; static int num_counters; static int oprofile_running; static spinlock_t virt_cntr_lock = SPIN_LOCK_UNLOCKED; static u32 ctr_enabled; static unsigned char trace_bus[4]; static unsigned char input_bus[2]; /* * Firmware interface functions */ static int rtas_ibm_cbe_perftools(int subfunc, int passthru, void *address, unsigned long length) { u64 paddr = __pa(address); return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, passthru, paddr >> 32, paddr & 0xffffffff, length); } static void pm_rtas_reset_signals(u32 node) { int ret; struct pm_signal pm_signal_local; /* The debug bus is being set to the passthru disable state. * However, the FW still expects atleast one legal signal routing * entry or it will return an error on the arguments. If we don't * supply a valid entry, we must ignore all return values. Ignoring * all return values means we might miss an error we should be * concerned about. */ /* fw expects physical cpu #. */ pm_signal_local.cpu = node; pm_signal_local.signal_group = 21; pm_signal_local.bus_word = 1; pm_signal_local.sub_unit = 0; pm_signal_local.bit = 0; ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE, &pm_signal_local, sizeof(struct pm_signal)); if (ret) printk(KERN_WARNING "%s: rtas returned: %d\n", __FUNCTION__, ret); } static void pm_rtas_activate_signals(u32 node, u32 count) { int ret; int j; struct pm_signal pm_signal_local[NR_PHYS_CTRS]; for (j = 0; j < count; j++) { /* fw expects physical cpu # */ pm_signal_local[j].cpu = node; pm_signal_local[j].signal_group = pm_signal[j].signal_group; pm_signal_local[j].bus_word = pm_signal[j].bus_word; pm_signal_local[j].sub_unit = pm_signal[j].sub_unit; pm_signal_local[j].bit = pm_signal[j].bit; } ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE, pm_signal_local, count * sizeof(struct pm_signal)); if (ret) printk(KERN_WARNING "%s: rtas returned: %d\n", __FUNCTION__, ret); } /* * PM Signal functions */ static void set_pm_event(u32 ctr, int event, u32 unit_mask) { struct pm_signal *p; u32 signal_bit; u32 bus_word, bus_type, count_cycles, polarity, input_control; int j, i; if (event == PPU_CYCLES_EVENT_NUM) { /* Special Event: Count all cpu cycles */ pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES; p = &(pm_signal[ctr]); p->signal_group = 21; p->bus_word = 1; p->sub_unit = 0; p->bit = 0; goto out; } else { pm_regs.pm07_cntrl[ctr] = 0; } bus_word = GET_BUS_WORD(unit_mask); bus_type = GET_BUS_TYPE(unit_mask); count_cycles = GET_COUNT_CYCLES(unit_mask); polarity = GET_POLARITY(unit_mask); input_control = GET_INPUT_CONTROL(unit_mask); signal_bit = (event % 100); p = &(pm_signal[ctr]); p->signal_group = event / 100; p->bus_word = bus_word; p->sub_unit = unit_mask & 0x0000f000; pm_regs.pm07_cntrl[ctr] = 0; pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles); pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity); pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control); if (input_control == 0) { if (signal_bit > 31) { signal_bit -= 32; if (bus_word == 0x3) bus_word = 0x2; else if (bus_word == 0xc) bus_word = 0x8; } if ((bus_type == 0) && p->signal_group >= 60) bus_type = 2; if ((bus_type == 1) && p->signal_group >= 50) bus_type = 0; pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit); } else { pm_regs.pm07_cntrl[ctr] = 0; p->bit = signal_bit; } for (i = 0; i < 4; i++) { if (bus_word & (1 << i)) { pm_regs.debug_bus_control |= (bus_type << (31 - (2 * i) + 1)); for (j = 0; j < 2; j++) { if (input_bus[j] == 0xff) { input_bus[j] = i; pm_regs.group_control |= (i << (31 - i)); break; } } } } out: ; } static void write_pm_cntrl(int cpu, struct pm_cntrl *pm_cntrl) { /* Oprofile will use 32 bit counters, set bits 7:10 to 0 */ u32 val = 0; if (pm_cntrl->enable == 1) val |= CBE_PM_ENABLE_PERF_MON; if (pm_cntrl->stop_at_max == 1) val |= CBE_PM_STOP_AT_MAX; if (pm_cntrl->trace_mode == 1) val |= CBE_PM_TRACE_MODE_SET(pm_cntrl->trace_mode); if (pm_cntrl->freeze == 1) val |= CBE_PM_FREEZE_ALL_CTRS; /* Routine set_count_mode must be called previously to set * the count mode based on the user selection of user and kernel. */ val |= CBE_PM_COUNT_MODE_SET(pm_cntrl->count_mode); cbe_write_pm(cpu, pm_control, val); } static inline void set_count_mode(u32 kernel, u32 user, struct pm_cntrl *pm_cntrl) { /* The user must specify user and kernel if they want them. If * neither is specified, OProfile will count in hypervisor mode */ if (kernel) { if (user) pm_cntrl->count_mode = CBE_COUNT_ALL_MODES; else pm_cntrl->count_mode = CBE_COUNT_SUPERVISOR_MODE; } else { if (user) pm_cntrl->count_mode = CBE_COUNT_PROBLEM_MODE; else pm_cntrl->count_mode = CBE_COUNT_HYPERVISOR_MODE; } } static inline void enable_ctr(u32 cpu, u32 ctr, u32 * pm07_cntrl) { pm07_cntrl[ctr] |= PM07_CTR_ENABLE(1); cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]); } /* * Oprofile is expected to collect data on all CPUs simultaneously. * However, there is one set of performance counters per node. There are * two hardware threads or virtual CPUs on each node. Hence, OProfile must * multiplex in time the performance counter collection on the two virtual * CPUs. The multiplexing of the performance counters is done by this * virtual counter routine. * * The pmc_values used below is defined as 'per-cpu' but its use is * more akin to 'per-node'. We need to store two sets of counter * values per node -- one for the previous run and one for the next. * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even * pair of per-cpu arrays is used for storing the previous and next * pmc values for a given node. * NOTE: We use the per-cpu variable to improve cache performance. */ static void cell_virtual_cntr(unsigned long data) { /* This routine will alternate loading the virtual counters for * virtual CPUs */ int i, prev_hdw_thread, next_hdw_thread; u32 cpu; unsigned long flags; /* Make sure that the interrupt_hander and * the virt counter are not both playing with * the counters on the same node. */ spin_lock_irqsave(&virt_cntr_lock, flags); prev_hdw_thread = hdw_thread; /* switch the cpu handling the interrupts */ hdw_thread = 1 ^ hdw_thread; next_hdw_thread = hdw_thread; /* The following is done only once per each node, but * we need cpu #, not node #, to pass to the cbe_xxx functions. */ for_each_online_cpu(cpu) { if (cbe_get_hw_thread_id(cpu)) continue; /* stop counters, save counter values, restore counts * for previous thread */ cbe_disable_pm(cpu); cbe_disable_pm_interrupts(cpu); for (i = 0; i < num_counters; i++) { per_cpu(pmc_values, cpu + prev_hdw_thread)[i] = cbe_read_ctr(cpu, i); if (per_cpu(pmc_values, cpu + next_hdw_thread)[i] == 0xFFFFFFFF) /* If the cntr value is 0xffffffff, we must * reset that to 0xfffffff0 when the current * thread is restarted. This will generate a new * interrupt and make sure that we never restore * the counters to the max value. If the counters * were restored to the max value, they do not * increment and no interrupts are generated. Hence * no more samples will be collected on that cpu. */ cbe_write_ctr(cpu, i, 0xFFFFFFF0); else cbe_write_ctr(cpu, i, per_cpu(pmc_values, cpu + next_hdw_thread)[i]); } /* Switch to the other thread. Change the interrupt * and control regs to be scheduled on the CPU * corresponding to the thread to execute. */ for (i = 0; i < num_counters; i++) { if (pmc_cntrl[next_hdw_thread][i].enabled) { /* There are some per thread events. * Must do the set event, enable_cntr * for each cpu. */ set_pm_event(i, pmc_cntrl[next_hdw_thread][i].evnts, pmc_cntrl[next_hdw_thread][i].masks); enable_ctr(cpu, i, pm_regs.pm07_cntrl); } else { cbe_write_pm07_control(cpu, i, 0); } } /* Enable interrupts on the CPU thread that is starting */ cbe_enable_pm_interrupts(cpu, next_hdw_thread, virt_cntr_inter_mask); cbe_enable_pm(cpu); } spin_unlock_irqrestore(&virt_cntr_lock, flags); mod_timer(&timer_virt_cntr, jiffies + HZ / 10); } static void start_virt_cntrs(void) { init_timer(&timer_virt_cntr); timer_virt_cntr.function = cell_virtual_cntr; timer_virt_cntr.data = 0UL; timer_virt_cntr.expires = jiffies + HZ / 10; add_timer(&timer_virt_cntr); } /* This function is called once for all cpus combined */ static void cell_reg_setup(struct op_counter_config *ctr, struct op_system_config *sys, int num_ctrs) { int i, j, cpu; pm_rtas_token = rtas_token("ibm,cbe-perftools"); if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) { printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n", __FUNCTION__); goto out; } num_counters = num_ctrs; pm_regs.group_control = 0; pm_regs.debug_bus_control = 0; /* setup the pm_control register */ memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl)); pm_regs.pm_cntrl.stop_at_max = 1; pm_regs.pm_cntrl.trace_mode = 0; pm_regs.pm_cntrl.freeze = 1; set_count_mode(sys->enable_kernel, sys->enable_user, &pm_regs.pm_cntrl); /* Setup the thread 0 events */ for (i = 0; i < num_ctrs; ++i) { pmc_cntrl[0][i].evnts = ctr[i].event; pmc_cntrl[0][i].masks = ctr[i].unit_mask; pmc_cntrl[0][i].enabled = ctr[i].enabled; pmc_cntrl[0][i].vcntr = i; for_each_possible_cpu(j) per_cpu(pmc_values, j)[i] = 0; } /* Setup the thread 1 events, map the thread 0 event to the * equivalent thread 1 event. */ for (i = 0; i < num_ctrs; ++i) { if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111)) pmc_cntrl[1][i].evnts = ctr[i].event + 19; else if (ctr[i].event == 2203) pmc_cntrl[1][i].evnts = ctr[i].event; else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215)) pmc_cntrl[1][i].evnts = ctr[i].event + 16; else pmc_cntrl[1][i].evnts = ctr[i].event; pmc_cntrl[1][i].masks = ctr[i].unit_mask; pmc_cntrl[1][i].enabled = ctr[i].enabled; pmc_cntrl[1][i].vcntr = i; } for (i = 0; i < 4; i++) trace_bus[i] = 0xff; for (i = 0; i < 2; i++) input_bus[i] = 0xff; /* Our counters count up, and "count" refers to * how much before the next interrupt, and we interrupt * on overflow. So we calculate the starting value * which will give us "count" until overflow. * Then we set the events on the enabled counters. */ for (i = 0; i < num_counters; ++i) { /* start with virtual counter set 0 */ if (pmc_cntrl[0][i].enabled) { /* Using 32bit counters, reset max - count */ reset_value[i] = 0xFFFFFFFF - ctr[i].count; set_pm_event(i, pmc_cntrl[0][i].evnts, pmc_cntrl[0][i].masks); /* global, used by cell_cpu_setup */ ctr_enabled |= (1 << i); } } /* initialize the previous counts for the virtual cntrs */ for_each_online_cpu(cpu) for (i = 0; i < num_counters; ++i) { per_cpu(pmc_values, cpu)[i] = reset_value[i]; } out: ; } /* This function is called once for each cpu */ static void cell_cpu_setup(struct op_counter_config *cntr) { u32 cpu = smp_processor_id(); u32 num_enabled = 0; int i; /* There is one performance monitor per processor chip (i.e. node), * so we only need to perform this function once per node. */ if (cbe_get_hw_thread_id(cpu)) goto out; if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) { printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n", __FUNCTION__); goto out; } /* Stop all counters */ cbe_disable_pm(cpu); cbe_disable_pm_interrupts(cpu); cbe_write_pm(cpu, pm_interval, 0); cbe_write_pm(cpu, pm_start_stop, 0); cbe_write_pm(cpu, group_control, pm_regs.group_control); cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control); write_pm_cntrl(cpu, &pm_regs.pm_cntrl); for (i = 0; i < num_counters; ++i) { if (ctr_enabled & (1 << i)) { pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu); num_enabled++; } } pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled); out: ; } static void cell_global_start(struct op_counter_config *ctr) { u32 cpu; u32 interrupt_mask = 0; u32 i; /* This routine gets called once for the system. * There is one performance monitor per node, so we * only need to perform this function once per node. */ for_each_online_cpu(cpu) { if (cbe_get_hw_thread_id(cpu)) continue; interrupt_mask = 0; for (i = 0; i < num_counters; ++i) { if (ctr_enabled & (1 << i)) { cbe_write_ctr(cpu, i, reset_value[i]); enable_ctr(cpu, i, pm_regs.pm07_cntrl); interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i); } else { /* Disable counter */ cbe_write_pm07_control(cpu, i, 0); } } cbe_clear_pm_interrupts(cpu); cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); cbe_enable_pm(cpu); } virt_cntr_inter_mask = interrupt_mask; oprofile_running = 1; smp_wmb(); /* NOTE: start_virt_cntrs will result in cell_virtual_cntr() being * executed which manipulates the PMU. We start the "virtual counter" * here so that we do not need to synchronize access to the PMU in * the above for-loop. */ start_virt_cntrs(); } static void cell_global_stop(void) { int cpu; /* This routine will be called once for the system. * There is one performance monitor per node, so we * only need to perform this function once per node. */ del_timer_sync(&timer_virt_cntr); oprofile_running = 0; smp_wmb(); for_each_online_cpu(cpu) { if (cbe_get_hw_thread_id(cpu)) continue; cbe_sync_irq(cbe_cpu_to_node(cpu)); /* Stop the counters */ cbe_disable_pm(cpu); /* Deactivate the signals */ pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); /* Deactivate interrupts */ cbe_disable_pm_interrupts(cpu); } } static void cell_handle_interrupt(struct pt_regs *regs, struct op_counter_config *ctr) { u32 cpu; u64 pc; int is_kernel; unsigned long flags = 0; u32 interrupt_mask; int i; cpu = smp_processor_id(); /* Need to make sure the interrupt handler and the virt counter * routine are not running at the same time. See the * cell_virtual_cntr() routine for additional comments. */ spin_lock_irqsave(&virt_cntr_lock, flags); /* Need to disable and reenable the performance counters * to get the desired behavior from the hardware. This * is hardware specific. */ cbe_disable_pm(cpu); interrupt_mask = cbe_clear_pm_interrupts(cpu); /* If the interrupt mask has been cleared, then the virt cntr * has cleared the interrupt. When the thread that generated * the interrupt is restored, the data count will be restored to * 0xffffff0 to cause the interrupt to be regenerated. */ if ((oprofile_running == 1) && (interrupt_mask != 0)) { pc = regs->nip; is_kernel = is_kernel_addr(pc); for (i = 0; i < num_counters; ++i) { if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i)) && ctr[i].enabled) { oprofile_add_pc(pc, is_kernel, i); cbe_write_ctr(cpu, i, reset_value[i]); } } /* The counters were frozen by the interrupt. * Reenable the interrupt and restart the counters. * If there was a race between the interrupt handler and * the virtual counter routine. The virutal counter * routine may have cleared the interrupts. Hence must * use the virt_cntr_inter_mask to re-enable the interrupts. */ cbe_enable_pm_interrupts(cpu, hdw_thread, virt_cntr_inter_mask); /* The writes to the various performance counters only writes * to a latch. The new values (interrupt setting bits, reset * counter value etc.) are not copied to the actual registers * until the performance monitor is enabled. In order to get * this to work as desired, the permormance monitor needs to * be disabled while writting to the latches. This is a * HW design issue. */ cbe_enable_pm(cpu); } spin_unlock_irqrestore(&virt_cntr_lock, flags); } struct op_powerpc_model op_model_cell = { .reg_setup = cell_reg_setup, .cpu_setup = cell_cpu_setup, .global_start = cell_global_start, .global_stop = cell_global_stop, .handle_interrupt = cell_handle_interrupt, };