/* * Cell Broadband Engine Performance Monitor * * (C) Copyright IBM Corporation 2001,2006 * * Author: * David Erb (djerb@us.ibm.com) * Kevin Corry (kevcorry@us.ibm.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/interrupt.h> #include <linux/types.h> #include <asm/io.h> #include <asm/irq_regs.h> #include <asm/machdep.h> #include <asm/pmc.h> #include <asm/reg.h> #include <asm/spu.h> #include "cbe_regs.h" #include "interrupt.h" /* * When writing to write-only mmio addresses, save a shadow copy. All of the * registers are 32-bit, but stored in the upper-half of a 64-bit field in * pmd_regs. */ #define WRITE_WO_MMIO(reg, x) \ do { \ u32 _x = (x); \ struct cbe_pmd_regs __iomem *pmd_regs; \ struct cbe_pmd_shadow_regs *shadow_regs; \ pmd_regs = cbe_get_cpu_pmd_regs(cpu); \ shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \ out_be64(&(pmd_regs->reg), (((u64)_x) << 32)); \ shadow_regs->reg = _x; \ } while (0) #define READ_SHADOW_REG(val, reg) \ do { \ struct cbe_pmd_shadow_regs *shadow_regs; \ shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \ (val) = shadow_regs->reg; \ } while (0) #define READ_MMIO_UPPER32(val, reg) \ do { \ struct cbe_pmd_regs __iomem *pmd_regs; \ pmd_regs = cbe_get_cpu_pmd_regs(cpu); \ (val) = (u32)(in_be64(&pmd_regs->reg) >> 32); \ } while (0) /* * Physical counter registers. * Each physical counter can act as one 32-bit counter or two 16-bit counters. */ u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr) { u32 val_in_latch, val = 0; if (phys_ctr < NR_PHYS_CTRS) { READ_SHADOW_REG(val_in_latch, counter_value_in_latch); /* Read the latch or the actual counter, whichever is newer. */ if (val_in_latch & (1 << phys_ctr)) { READ_SHADOW_REG(val, pm_ctr[phys_ctr]); } else { READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]); } } return val; } EXPORT_SYMBOL_GPL(cbe_read_phys_ctr); void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val) { struct cbe_pmd_shadow_regs *shadow_regs; u32 pm_ctrl; if (phys_ctr < NR_PHYS_CTRS) { /* Writing to a counter only writes to a hardware latch. * The new value is not propagated to the actual counter * until the performance monitor is enabled. */ WRITE_WO_MMIO(pm_ctr[phys_ctr], val); pm_ctrl = cbe_read_pm(cpu, pm_control); if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) { /* The counters are already active, so we need to * rewrite the pm_control register to "re-enable" * the PMU. */ cbe_write_pm(cpu, pm_control, pm_ctrl); } else { shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); shadow_regs->counter_value_in_latch |= (1 << phys_ctr); } } } EXPORT_SYMBOL_GPL(cbe_write_phys_ctr); /* * "Logical" counter registers. * These will read/write 16-bits or 32-bits depending on the * current size of the counter. Counters 4 - 7 are always 16-bit. */ u32 cbe_read_ctr(u32 cpu, u32 ctr) { u32 val; u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1); val = cbe_read_phys_ctr(cpu, phys_ctr); if (cbe_get_ctr_size(cpu, phys_ctr) == 16) val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff); return val; } EXPORT_SYMBOL_GPL(cbe_read_ctr); void cbe_write_ctr(u32 cpu, u32 ctr, u32 val) { u32 phys_ctr; u32 phys_val; phys_ctr = ctr & (NR_PHYS_CTRS - 1); if (cbe_get_ctr_size(cpu, phys_ctr) == 16) { phys_val = cbe_read_phys_ctr(cpu, phys_ctr); if (ctr < NR_PHYS_CTRS) val = (val << 16) | (phys_val & 0xffff); else val = (val & 0xffff) | (phys_val & 0xffff0000); } cbe_write_phys_ctr(cpu, phys_ctr, val); } EXPORT_SYMBOL_GPL(cbe_write_ctr); /* * Counter-control registers. * Each "logical" counter has a corresponding control register. */ u32 cbe_read_pm07_control(u32 cpu, u32 ctr) { u32 pm07_control = 0; if (ctr < NR_CTRS) READ_SHADOW_REG(pm07_control, pm07_control[ctr]); return pm07_control; } EXPORT_SYMBOL_GPL(cbe_read_pm07_control); void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val) { if (ctr < NR_CTRS) WRITE_WO_MMIO(pm07_control[ctr], val); } EXPORT_SYMBOL_GPL(cbe_write_pm07_control); /* * Other PMU control registers. Most of these are write-only. */ u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg) { u32 val = 0; switch (reg) { case group_control: READ_SHADOW_REG(val, group_control); break; case debug_bus_control: READ_SHADOW_REG(val, debug_bus_control); break; case trace_address: READ_MMIO_UPPER32(val, trace_address); break; case ext_tr_timer: READ_SHADOW_REG(val, ext_tr_timer); break; case pm_status: READ_MMIO_UPPER32(val, pm_status); break; case pm_control: READ_SHADOW_REG(val, pm_control); break; case pm_interval: READ_SHADOW_REG(val, pm_interval); break; case pm_start_stop: READ_SHADOW_REG(val, pm_start_stop); break; } return val; } EXPORT_SYMBOL_GPL(cbe_read_pm); void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val) { switch (reg) { case group_control: WRITE_WO_MMIO(group_control, val); break; case debug_bus_control: WRITE_WO_MMIO(debug_bus_control, val); break; case trace_address: WRITE_WO_MMIO(trace_address, val); break; case ext_tr_timer: WRITE_WO_MMIO(ext_tr_timer, val); break; case pm_status: WRITE_WO_MMIO(pm_status, val); break; case pm_control: WRITE_WO_MMIO(pm_control, val); break; case pm_interval: WRITE_WO_MMIO(pm_interval, val); break; case pm_start_stop: WRITE_WO_MMIO(pm_start_stop, val); break; } } EXPORT_SYMBOL_GPL(cbe_write_pm); /* * Get/set the size of a physical counter to either 16 or 32 bits. */ u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr) { u32 pm_ctrl, size = 0; if (phys_ctr < NR_PHYS_CTRS) { pm_ctrl = cbe_read_pm(cpu, pm_control); size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32; } return size; } EXPORT_SYMBOL_GPL(cbe_get_ctr_size); void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size) { u32 pm_ctrl; if (phys_ctr < NR_PHYS_CTRS) { pm_ctrl = cbe_read_pm(cpu, pm_control); switch (ctr_size) { case 16: pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr); break; case 32: pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr); break; } cbe_write_pm(cpu, pm_control, pm_ctrl); } } EXPORT_SYMBOL_GPL(cbe_set_ctr_size); /* * Enable/disable the entire performance monitoring unit. * When we enable the PMU, all pending writes to counters get committed. */ void cbe_enable_pm(u32 cpu) { struct cbe_pmd_shadow_regs *shadow_regs; u32 pm_ctrl; shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); shadow_regs->counter_value_in_latch = 0; pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON; cbe_write_pm(cpu, pm_control, pm_ctrl); } EXPORT_SYMBOL_GPL(cbe_enable_pm); void cbe_disable_pm(u32 cpu) { u32 pm_ctrl; pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON; cbe_write_pm(cpu, pm_control, pm_ctrl); } EXPORT_SYMBOL_GPL(cbe_disable_pm); /* * Reading from the trace_buffer. * The trace buffer is two 64-bit registers. Reading from * the second half automatically increments the trace_address. */ void cbe_read_trace_buffer(u32 cpu, u64 *buf) { struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu); *buf++ = in_be64(&pmd_regs->trace_buffer_0_63); *buf++ = in_be64(&pmd_regs->trace_buffer_64_127); } EXPORT_SYMBOL_GPL(cbe_read_trace_buffer); /* * Enabling/disabling interrupts for the entire performance monitoring unit. */ u32 cbe_get_and_clear_pm_interrupts(u32 cpu) { /* Reading pm_status clears the interrupt bits. */ return cbe_read_pm(cpu, pm_status); } EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts); void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask) { /* Set which node and thread will handle the next interrupt. */ iic_set_interrupt_routing(cpu, thread, 0); /* Enable the interrupt bits in the pm_status register. */ if (mask) cbe_write_pm(cpu, pm_status, mask); } EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts); void cbe_disable_pm_interrupts(u32 cpu) { cbe_get_and_clear_pm_interrupts(cpu); cbe_write_pm(cpu, pm_status, 0); } EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts); static irqreturn_t cbe_pm_irq(int irq, void *dev_id) { perf_irq(get_irq_regs()); return IRQ_HANDLED; } static int __init cbe_init_pm_irq(void) { unsigned int irq; int rc, node; if (!machine_is(cell)) return 0; for_each_node(node) { irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI | (node << IIC_IRQ_NODE_SHIFT)); if (irq == NO_IRQ) { printk("ERROR: Unable to allocate irq for node %d\n", node); return -EINVAL; } rc = request_irq(irq, cbe_pm_irq, IRQF_DISABLED, "cbe-pmu-0", NULL); if (rc) { printk("ERROR: Request for irq on node %d failed\n", node); return rc; } } return 0; } arch_initcall(cbe_init_pm_irq); void cbe_sync_irq(int node) { unsigned int irq; irq = irq_find_mapping(NULL, IIC_IRQ_IOEX_PMI | (node << IIC_IRQ_NODE_SHIFT)); if (irq == NO_IRQ) { printk(KERN_WARNING "ERROR, unable to get existing irq %d " \ "for node %d\n", irq, node); return; } synchronize_irq(irq); } EXPORT_SYMBOL_GPL(cbe_sync_irq);