/* * General Purpose functions for the global management of the * Communication Processor Module. * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) * * In addition to the individual control of the communication * channels, there are a few functions that globally affect the * communication processor. * * Buffer descriptors must be allocated from the dual ported memory * space. The allocator for that is here. When the communication * process is reset, we reclaim the memory available. There is * currently no deallocator for this memory. * The amount of space available is platform dependent. On the * MBX, the EPPC software loads additional microcode into the * communication processor, and uses some of the DP ram for this * purpose. Current, the first 512 bytes and the last 256 bytes of * memory are used. Right now I am conservative and only use the * memory that can never be used for microcode. If there are * applications that require more DP ram, we can expand the boundaries * but then we have to be careful of any downloaded microcode. */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/dma-mapping.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/8xx_immap.h> #include <asm/cpm1.h> #include <asm/io.h> #include <asm/tlbflush.h> #include <asm/rheap.h> #include <asm/prom.h> #include <asm/cpm.h> #include <asm/fs_pd.h> #define CPM_MAP_SIZE (0x4000) #ifndef CONFIG_PPC_CPM_NEW_BINDING static void m8xx_cpm_dpinit(void); #endif cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */ immap_t __iomem *mpc8xx_immr; static cpic8xx_t __iomem *cpic_reg; static struct irq_host *cpm_pic_host; static void cpm_mask_irq(unsigned int irq) { unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); } static void cpm_unmask_irq(unsigned int irq) { unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); } static void cpm_end_irq(unsigned int irq) { unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); } static struct irq_chip cpm_pic = { .typename = " CPM PIC ", .mask = cpm_mask_irq, .unmask = cpm_unmask_irq, .eoi = cpm_end_irq, }; int cpm_get_irq(void) { int cpm_vec; /* Get the vector by setting the ACK bit and then reading * the register. */ out_be16(&cpic_reg->cpic_civr, 1); cpm_vec = in_be16(&cpic_reg->cpic_civr); cpm_vec >>= 11; return irq_linear_revmap(cpm_pic_host, cpm_vec); } static int cpm_pic_host_map(struct irq_host *h, unsigned int virq, irq_hw_number_t hw) { pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); get_irq_desc(virq)->status |= IRQ_LEVEL; set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); return 0; } /* The CPM can generate the error interrupt when there is a race condition * between generating and masking interrupts. All we have to do is ACK it * and return. This is a no-op function so we don't need any special * tests in the interrupt handler. */ static irqreturn_t cpm_error_interrupt(int irq, void *dev) { return IRQ_HANDLED; } static struct irqaction cpm_error_irqaction = { .handler = cpm_error_interrupt, .mask = CPU_MASK_NONE, .name = "error", }; static struct irq_host_ops cpm_pic_host_ops = { .map = cpm_pic_host_map, }; unsigned int cpm_pic_init(void) { struct device_node *np = NULL; struct resource res; unsigned int sirq = NO_IRQ, hwirq, eirq; int ret; pr_debug("cpm_pic_init\n"); np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic"); if (np == NULL) np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); if (np == NULL) { printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); return sirq; } ret = of_address_to_resource(np, 0, &res); if (ret) goto end; cpic_reg = ioremap(res.start, res.end - res.start + 1); if (cpic_reg == NULL) goto end; sirq = irq_of_parse_and_map(np, 0); if (sirq == NO_IRQ) goto end; /* Initialize the CPM interrupt controller. */ hwirq = (unsigned int)irq_map[sirq].hwirq; out_be32(&cpic_reg->cpic_cicr, (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | ((hwirq/2) << 13) | CICR_HP_MASK); out_be32(&cpic_reg->cpic_cimr, 0); cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR, 64, &cpm_pic_host_ops, 64); if (cpm_pic_host == NULL) { printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); sirq = NO_IRQ; goto end; } /* Install our own error handler. */ np = of_find_compatible_node(NULL, NULL, "fsl,cpm1"); if (np == NULL) np = of_find_node_by_type(NULL, "cpm"); if (np == NULL) { printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); goto end; } eirq = irq_of_parse_and_map(np, 0); if (eirq == NO_IRQ) goto end; if (setup_irq(eirq, &cpm_error_irqaction)) printk(KERN_ERR "Could not allocate CPM error IRQ!"); setbits32(&cpic_reg->cpic_cicr, CICR_IEN); end: of_node_put(np); return sirq; } void __init cpm_reset(void) { sysconf8xx_t __iomem *siu_conf; mpc8xx_immr = ioremap(get_immrbase(), 0x4000); if (!mpc8xx_immr) { printk(KERN_CRIT "Could not map IMMR\n"); return; } cpmp = &mpc8xx_immr->im_cpm; #ifndef CONFIG_PPC_EARLY_DEBUG_CPM /* Perform a reset. */ out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); /* Wait for it. */ while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG); #endif #ifdef CONFIG_UCODE_PATCH cpm_load_patch(cpmp); #endif /* Set SDMA Bus Request priority 5. * On 860T, this also enables FEC priority 6. I am not sure * this is what we realy want for some applications, but the * manual recommends it. * Bit 25, FAM can also be set to use FEC aggressive mode (860T). */ siu_conf = immr_map(im_siu_conf); out_be32(&siu_conf->sc_sdcr, 1); immr_unmap(siu_conf); #ifdef CONFIG_PPC_CPM_NEW_BINDING cpm_muram_init(); #else /* Reclaim the DP memory for our use. */ m8xx_cpm_dpinit(); #endif } static DEFINE_SPINLOCK(cmd_lock); #define MAX_CR_CMD_LOOPS 10000 int cpm_command(u32 command, u8 opcode) { int i, ret; unsigned long flags; if (command & 0xffffff0f) return -EINVAL; spin_lock_irqsave(&cmd_lock, flags); ret = 0; out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8)); for (i = 0; i < MAX_CR_CMD_LOOPS; i++) if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) goto out; printk(KERN_ERR "%s(): Not able to issue CPM command\n", __FUNCTION__); ret = -EIO; out: spin_unlock_irqrestore(&cmd_lock, flags); return ret; } EXPORT_SYMBOL(cpm_command); /* Set a baud rate generator. This needs lots of work. There are * four BRGs, any of which can be wired to any channel. * The internal baud rate clock is the system clock divided by 16. * This assumes the baudrate is 16x oversampled by the uart. */ #define BRG_INT_CLK (get_brgfreq()) #define BRG_UART_CLK (BRG_INT_CLK/16) #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) void cpm_setbrg(uint brg, uint rate) { u32 __iomem *bp; /* This is good enough to get SMCs running..... */ bp = &cpmp->cp_brgc1; bp += brg; /* The BRG has a 12-bit counter. For really slow baud rates (or * really fast processors), we may have to further divide by 16. */ if (((BRG_UART_CLK / rate) - 1) < 4096) out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN); else out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | CPM_BRG_EN | CPM_BRG_DIV16); } #ifndef CONFIG_PPC_CPM_NEW_BINDING /* * dpalloc / dpfree bits. */ static spinlock_t cpm_dpmem_lock; /* * 16 blocks should be enough to satisfy all requests * until the memory subsystem goes up... */ static rh_block_t cpm_boot_dpmem_rh_block[16]; static rh_info_t cpm_dpmem_info; #define CPM_DPMEM_ALIGNMENT 8 static u8 __iomem *dpram_vbase; static phys_addr_t dpram_pbase; static void m8xx_cpm_dpinit(void) { spin_lock_init(&cpm_dpmem_lock); dpram_vbase = cpmp->cp_dpmem; dpram_pbase = get_immrbase() + offsetof(immap_t, im_cpm.cp_dpmem); /* Initialize the info header */ rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, sizeof(cpm_boot_dpmem_rh_block) / sizeof(cpm_boot_dpmem_rh_block[0]), cpm_boot_dpmem_rh_block); /* * Attach the usable dpmem area. * XXX: This is actually crap. CPM_DATAONLY_BASE and * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies * with the processor and the microcode patches applied / activated. * But the following should be at least safe. */ rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); } /* * Allocate the requested size worth of DP memory. * This function returns an offset into the DPRAM area. * Use cpm_dpram_addr() to get the virtual address of the area. */ unsigned long cpm_dpalloc(uint size, uint align) { unsigned long start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc(&cpm_dpmem_info, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return (uint)start; } EXPORT_SYMBOL(cpm_dpalloc); int cpm_dpfree(unsigned long offset) { int ret; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); ret = rh_free(&cpm_dpmem_info, offset); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return ret; } EXPORT_SYMBOL(cpm_dpfree); unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align) { unsigned long start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return start; } EXPORT_SYMBOL(cpm_dpalloc_fixed); void cpm_dpdump(void) { rh_dump(&cpm_dpmem_info); } EXPORT_SYMBOL(cpm_dpdump); void *cpm_dpram_addr(unsigned long offset) { return (void *)(dpram_vbase + offset); } EXPORT_SYMBOL(cpm_dpram_addr); uint cpm_dpram_phys(u8 *addr) { return (dpram_pbase + (uint)(addr - dpram_vbase)); } EXPORT_SYMBOL(cpm_dpram_phys); #endif /* !CONFIG_PPC_CPM_NEW_BINDING */ struct cpm_ioport16 { __be16 dir, par, odr_sor, dat, intr; __be16 res[3]; }; struct cpm_ioport32 { __be32 dir, par, sor; }; static void cpm1_set_pin32(int port, int pin, int flags) { struct cpm_ioport32 __iomem *iop; pin = 1 << (31 - pin); if (port == CPM_PORTB) iop = (struct cpm_ioport32 __iomem *) &mpc8xx_immr->im_cpm.cp_pbdir; else iop = (struct cpm_ioport32 __iomem *) &mpc8xx_immr->im_cpm.cp_pedir; if (flags & CPM_PIN_OUTPUT) setbits32(&iop->dir, pin); else clrbits32(&iop->dir, pin); if (!(flags & CPM_PIN_GPIO)) setbits32(&iop->par, pin); else clrbits32(&iop->par, pin); if (port == CPM_PORTB) { if (flags & CPM_PIN_OPENDRAIN) setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); else clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); } if (port == CPM_PORTE) { if (flags & CPM_PIN_SECONDARY) setbits32(&iop->sor, pin); else clrbits32(&iop->sor, pin); if (flags & CPM_PIN_OPENDRAIN) setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); else clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); } } static void cpm1_set_pin16(int port, int pin, int flags) { struct cpm_ioport16 __iomem *iop = (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport; pin = 1 << (15 - pin); if (port != 0) iop += port - 1; if (flags & CPM_PIN_OUTPUT) setbits16(&iop->dir, pin); else clrbits16(&iop->dir, pin); if (!(flags & CPM_PIN_GPIO)) setbits16(&iop->par, pin); else clrbits16(&iop->par, pin); if (port == CPM_PORTA) { if (flags & CPM_PIN_OPENDRAIN) setbits16(&iop->odr_sor, pin); else clrbits16(&iop->odr_sor, pin); } if (port == CPM_PORTC) { if (flags & CPM_PIN_SECONDARY) setbits16(&iop->odr_sor, pin); else clrbits16(&iop->odr_sor, pin); } } void cpm1_set_pin(enum cpm_port port, int pin, int flags) { if (port == CPM_PORTB || port == CPM_PORTE) cpm1_set_pin32(port, pin, flags); else cpm1_set_pin16(port, pin, flags); } int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode) { int shift; int i, bits = 0; u32 __iomem *reg; u32 mask = 7; u8 clk_map[][3] = { {CPM_CLK_SCC1, CPM_BRG1, 0}, {CPM_CLK_SCC1, CPM_BRG2, 1}, {CPM_CLK_SCC1, CPM_BRG3, 2}, {CPM_CLK_SCC1, CPM_BRG4, 3}, {CPM_CLK_SCC1, CPM_CLK1, 4}, {CPM_CLK_SCC1, CPM_CLK2, 5}, {CPM_CLK_SCC1, CPM_CLK3, 6}, {CPM_CLK_SCC1, CPM_CLK4, 7}, {CPM_CLK_SCC2, CPM_BRG1, 0}, {CPM_CLK_SCC2, CPM_BRG2, 1}, {CPM_CLK_SCC2, CPM_BRG3, 2}, {CPM_CLK_SCC2, CPM_BRG4, 3}, {CPM_CLK_SCC2, CPM_CLK1, 4}, {CPM_CLK_SCC2, CPM_CLK2, 5}, {CPM_CLK_SCC2, CPM_CLK3, 6}, {CPM_CLK_SCC2, CPM_CLK4, 7}, {CPM_CLK_SCC3, CPM_BRG1, 0}, {CPM_CLK_SCC3, CPM_BRG2, 1}, {CPM_CLK_SCC3, CPM_BRG3, 2}, {CPM_CLK_SCC3, CPM_BRG4, 3}, {CPM_CLK_SCC3, CPM_CLK5, 4}, {CPM_CLK_SCC3, CPM_CLK6, 5}, {CPM_CLK_SCC3, CPM_CLK7, 6}, {CPM_CLK_SCC3, CPM_CLK8, 7}, {CPM_CLK_SCC4, CPM_BRG1, 0}, {CPM_CLK_SCC4, CPM_BRG2, 1}, {CPM_CLK_SCC4, CPM_BRG3, 2}, {CPM_CLK_SCC4, CPM_BRG4, 3}, {CPM_CLK_SCC4, CPM_CLK5, 4}, {CPM_CLK_SCC4, CPM_CLK6, 5}, {CPM_CLK_SCC4, CPM_CLK7, 6}, {CPM_CLK_SCC4, CPM_CLK8, 7}, {CPM_CLK_SMC1, CPM_BRG1, 0}, {CPM_CLK_SMC1, CPM_BRG2, 1}, {CPM_CLK_SMC1, CPM_BRG3, 2}, {CPM_CLK_SMC1, CPM_BRG4, 3}, {CPM_CLK_SMC1, CPM_CLK1, 4}, {CPM_CLK_SMC1, CPM_CLK2, 5}, {CPM_CLK_SMC1, CPM_CLK3, 6}, {CPM_CLK_SMC1, CPM_CLK4, 7}, {CPM_CLK_SMC2, CPM_BRG1, 0}, {CPM_CLK_SMC2, CPM_BRG2, 1}, {CPM_CLK_SMC2, CPM_BRG3, 2}, {CPM_CLK_SMC2, CPM_BRG4, 3}, {CPM_CLK_SMC2, CPM_CLK5, 4}, {CPM_CLK_SMC2, CPM_CLK6, 5}, {CPM_CLK_SMC2, CPM_CLK7, 6}, {CPM_CLK_SMC2, CPM_CLK8, 7}, }; switch (target) { case CPM_CLK_SCC1: reg = &mpc8xx_immr->im_cpm.cp_sicr; shift = 0; break; case CPM_CLK_SCC2: reg = &mpc8xx_immr->im_cpm.cp_sicr; shift = 8; break; case CPM_CLK_SCC3: reg = &mpc8xx_immr->im_cpm.cp_sicr; shift = 16; break; case CPM_CLK_SCC4: reg = &mpc8xx_immr->im_cpm.cp_sicr; shift = 24; break; case CPM_CLK_SMC1: reg = &mpc8xx_immr->im_cpm.cp_simode; shift = 12; break; case CPM_CLK_SMC2: reg = &mpc8xx_immr->im_cpm.cp_simode; shift = 28; break; default: printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n"); return -EINVAL; } if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX) shift += 3; for (i = 0; i < ARRAY_SIZE(clk_map); i++) { if (clk_map[i][0] == target && clk_map[i][1] == clock) { bits = clk_map[i][2]; break; } } if (i == ARRAY_SIZE(clk_map)) { printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n"); return -EINVAL; } bits <<= shift; mask <<= shift; out_be32(reg, (in_be32(reg) & ~mask) | bits); return 0; }