/* * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved. * * Authors: Shlomi Gridish * Li Yang * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net) * * Description: * General Purpose functions for the global management of the * QUICC Engine (QE). * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void qe_snums_init(void); static void qe_muram_init(void); static int qe_sdma_init(void); static DEFINE_SPINLOCK(qe_lock); /* QE snum state */ enum qe_snum_state { QE_SNUM_STATE_USED, QE_SNUM_STATE_FREE }; /* QE snum */ struct qe_snum { u8 num; enum qe_snum_state state; }; /* We allocate this here because it is used almost exclusively for * the communication processor devices. */ struct qe_immap *qe_immr = NULL; EXPORT_SYMBOL(qe_immr); static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */ static phys_addr_t qebase = -1; phys_addr_t get_qe_base(void) { struct device_node *qe; unsigned int size; const void *prop; if (qebase != -1) return qebase; qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { qe = of_find_node_by_type(NULL, "qe"); if (!qe) return qebase; } prop = of_get_property(qe, "reg", &size); qebase = of_translate_address(qe, prop); of_node_put(qe); return qebase; } EXPORT_SYMBOL(get_qe_base); void qe_reset(void) { if (qe_immr == NULL) qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE); qe_snums_init(); qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID, QE_CR_PROTOCOL_UNSPECIFIED, 0); /* Reclaim the MURAM memory for our use. */ qe_muram_init(); if (qe_sdma_init()) panic("sdma init failed!"); } int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input) { unsigned long flags; u8 mcn_shift = 0, dev_shift = 0; spin_lock_irqsave(&qe_lock, flags); if (cmd == QE_RESET) { out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG)); } else { if (cmd == QE_ASSIGN_PAGE) { /* Here device is the SNUM, not sub-block */ dev_shift = QE_CR_SNUM_SHIFT; } else if (cmd == QE_ASSIGN_RISC) { /* Here device is the SNUM, and mcnProtocol is * e_QeCmdRiscAssignment value */ dev_shift = QE_CR_SNUM_SHIFT; mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT; } else { if (device == QE_CR_SUBBLOCK_USB) mcn_shift = QE_CR_MCN_USB_SHIFT; else mcn_shift = QE_CR_MCN_NORMAL_SHIFT; } out_be32(&qe_immr->cp.cecdr, cmd_input); out_be32(&qe_immr->cp.cecr, (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32) mcn_protocol << mcn_shift)); } /* wait for the QE_CR_FLG to clear */ while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) cpu_relax(); spin_unlock_irqrestore(&qe_lock, flags); return 0; } EXPORT_SYMBOL(qe_issue_cmd); /* Set a baud rate generator. This needs lots of work. There are * 16 BRGs, which can be connected to the QE channels or output * as clocks. The BRGs are in two different block of internal * memory mapped space. * The BRG clock is the QE clock divided by 2. * It was set up long ago during the initial boot phase and is * is given to us. * Baud rate clocks are zero-based in the driver code (as that maps * to port numbers). Documentation uses 1-based numbering. */ static unsigned int brg_clk = 0; unsigned int get_brg_clk(void) { struct device_node *qe; unsigned int size; const u32 *prop; if (brg_clk) return brg_clk; qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { qe = of_find_node_by_type(NULL, "qe"); if (!qe) return brg_clk; } prop = of_get_property(qe, "brg-frequency", &size); if (!prop || size != sizeof(*prop)) return brg_clk; brg_clk = *prop; of_node_put(qe); return brg_clk; } /* Program the BRG to the given sampling rate and multiplier * * @brg: the BRG, QE_BRG1 - QE_BRG16 * @rate: the desired sampling rate * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01, * then 'multiplier' should be 8. */ int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier) { u32 divisor, tempval; u32 div16 = 0; if ((brg < QE_BRG1) || (brg > QE_BRG16)) return -EINVAL; divisor = get_brg_clk() / (rate * multiplier); if (divisor > QE_BRGC_DIVISOR_MAX + 1) { div16 = QE_BRGC_DIV16; divisor /= 16; } /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says that the BRG divisor must be even if you're not using divide-by-16 mode. */ if (!div16 && (divisor & 1)) divisor++; tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE | div16; out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval); return 0; } EXPORT_SYMBOL(qe_setbrg); /* Convert a string to a QE clock source enum * * This function takes a string, typically from a property in the device * tree, and returns the corresponding "enum qe_clock" value. */ enum qe_clock qe_clock_source(const char *source) { unsigned int i; if (strcasecmp(source, "none") == 0) return QE_CLK_NONE; if (strncasecmp(source, "brg", 3) == 0) { i = simple_strtoul(source + 3, NULL, 10); if ((i >= 1) && (i <= 16)) return (QE_BRG1 - 1) + i; else return QE_CLK_DUMMY; } if (strncasecmp(source, "clk", 3) == 0) { i = simple_strtoul(source + 3, NULL, 10); if ((i >= 1) && (i <= 24)) return (QE_CLK1 - 1) + i; else return QE_CLK_DUMMY; } return QE_CLK_DUMMY; } EXPORT_SYMBOL(qe_clock_source); /* Initialize SNUMs (thread serial numbers) according to * QE Module Control chapter, SNUM table */ static void qe_snums_init(void) { int i; static const u8 snum_init[] = { 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D, 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89, 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9, 0xD8, 0xD9, 0xE8, 0xE9, }; for (i = 0; i < QE_NUM_OF_SNUM; i++) { snums[i].num = snum_init[i]; snums[i].state = QE_SNUM_STATE_FREE; } } int qe_get_snum(void) { unsigned long flags; int snum = -EBUSY; int i; spin_lock_irqsave(&qe_lock, flags); for (i = 0; i < QE_NUM_OF_SNUM; i++) { if (snums[i].state == QE_SNUM_STATE_FREE) { snums[i].state = QE_SNUM_STATE_USED; snum = snums[i].num; break; } } spin_unlock_irqrestore(&qe_lock, flags); return snum; } EXPORT_SYMBOL(qe_get_snum); void qe_put_snum(u8 snum) { int i; for (i = 0; i < QE_NUM_OF_SNUM; i++) { if (snums[i].num == snum) { snums[i].state = QE_SNUM_STATE_FREE; break; } } } EXPORT_SYMBOL(qe_put_snum); static int qe_sdma_init(void) { struct sdma *sdma = &qe_immr->sdma; unsigned long sdma_buf_offset; if (!sdma) return -ENODEV; /* allocate 2 internal temporary buffers (512 bytes size each) for * the SDMA */ sdma_buf_offset = qe_muram_alloc(512 * 2, 4096); if (IS_ERR_VALUE(sdma_buf_offset)) return -ENOMEM; out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK); out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK | (0x1 << QE_SDMR_CEN_SHIFT))); return 0; } /* * muram_alloc / muram_free bits. */ static DEFINE_SPINLOCK(qe_muram_lock); /* 16 blocks should be enough to satisfy all requests * until the memory subsystem goes up... */ static rh_block_t qe_boot_muram_rh_block[16]; static rh_info_t qe_muram_info; static void qe_muram_init(void) { struct device_node *np; const u32 *address; u64 size; unsigned int flags; /* initialize the info header */ rh_init(&qe_muram_info, 1, sizeof(qe_boot_muram_rh_block) / sizeof(qe_boot_muram_rh_block[0]), qe_boot_muram_rh_block); /* Attach the usable muram area */ /* XXX: This is a subset of the available muram. It * varies with the processor and the microcode patches activated. */ np = of_find_compatible_node(NULL, NULL, "fsl,qe-muram-data"); if (!np) { np = of_find_node_by_name(NULL, "data-only"); if (!np) { WARN_ON(1); return; } } address = of_get_address(np, 0, &size, &flags); WARN_ON(!address); of_node_put(np); if (address) rh_attach_region(&qe_muram_info, *address, (int)size); } /* This function returns an index into the MURAM area. */ unsigned long qe_muram_alloc(int size, int align) { unsigned long start; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); start = rh_alloc_align(&qe_muram_info, size, align, "QE"); spin_unlock_irqrestore(&qe_muram_lock, flags); return start; } EXPORT_SYMBOL(qe_muram_alloc); int qe_muram_free(unsigned long offset) { int ret; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); ret = rh_free(&qe_muram_info, offset); spin_unlock_irqrestore(&qe_muram_lock, flags); return ret; } EXPORT_SYMBOL(qe_muram_free); /* not sure if this is ever needed */ unsigned long qe_muram_alloc_fixed(unsigned long offset, int size) { unsigned long start; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); start = rh_alloc_fixed(&qe_muram_info, offset, size, "commproc"); spin_unlock_irqrestore(&qe_muram_lock, flags); return start; } EXPORT_SYMBOL(qe_muram_alloc_fixed); void qe_muram_dump(void) { rh_dump(&qe_muram_info); } EXPORT_SYMBOL(qe_muram_dump); void *qe_muram_addr(unsigned long offset) { return (void *)&qe_immr->muram[offset]; } EXPORT_SYMBOL(qe_muram_addr); /* The maximum number of RISCs we support */ #define MAX_QE_RISC 2 /* Firmware information stored here for qe_get_firmware_info() */ static struct qe_firmware_info qe_firmware_info; /* * Set to 1 if QE firmware has been uploaded, and therefore * qe_firmware_info contains valid data. */ static int qe_firmware_uploaded; /* * Upload a QE microcode * * This function is a worker function for qe_upload_firmware(). It does * the actual uploading of the microcode. */ static void qe_upload_microcode(const void *base, const struct qe_microcode *ucode) { const __be32 *code = base + be32_to_cpu(ucode->code_offset); unsigned int i; if (ucode->major || ucode->minor || ucode->revision) printk(KERN_INFO "qe-firmware: " "uploading microcode '%s' version %u.%u.%u\n", ucode->id, ucode->major, ucode->minor, ucode->revision); else printk(KERN_INFO "qe-firmware: " "uploading microcode '%s'\n", ucode->id); /* Use auto-increment */ out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) | QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR); for (i = 0; i < be32_to_cpu(ucode->count); i++) out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i])); } /* * Upload a microcode to the I-RAM at a specific address. * * See Documentation/powerpc/qe-firmware.txt for information on QE microcode * uploading. * * Currently, only version 1 is supported, so the 'version' field must be * set to 1. * * The SOC model and revision are not validated, they are only displayed for * informational purposes. * * 'calc_size' is the calculated size, in bytes, of the firmware structure and * all of the microcode structures, minus the CRC. * * 'length' is the size that the structure says it is, including the CRC. */ int qe_upload_firmware(const struct qe_firmware *firmware) { unsigned int i; unsigned int j; u32 crc; size_t calc_size = sizeof(struct qe_firmware); size_t length; const struct qe_header *hdr; if (!firmware) { printk(KERN_ERR "qe-firmware: invalid pointer\n"); return -EINVAL; } hdr = &firmware->header; length = be32_to_cpu(hdr->length); /* Check the magic */ if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || (hdr->magic[2] != 'F')) { printk(KERN_ERR "qe-firmware: not a microcode\n"); return -EPERM; } /* Check the version */ if (hdr->version != 1) { printk(KERN_ERR "qe-firmware: unsupported version\n"); return -EPERM; } /* Validate some of the fields */ if ((firmware->count < 1) || (firmware->count >= MAX_QE_RISC)) { printk(KERN_ERR "qe-firmware: invalid data\n"); return -EINVAL; } /* Validate the length and check if there's a CRC */ calc_size += (firmware->count - 1) * sizeof(struct qe_microcode); for (i = 0; i < firmware->count; i++) /* * For situations where the second RISC uses the same microcode * as the first, the 'code_offset' and 'count' fields will be * zero, so it's okay to add those. */ calc_size += sizeof(__be32) * be32_to_cpu(firmware->microcode[i].count); /* Validate the length */ if (length != calc_size + sizeof(__be32)) { printk(KERN_ERR "qe-firmware: invalid length\n"); return -EPERM; } /* Validate the CRC */ crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size)); if (crc != crc32(0, firmware, calc_size)) { printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n"); return -EIO; } /* * If the microcode calls for it, split the I-RAM. */ if (!firmware->split) setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR); if (firmware->soc.model) printk(KERN_INFO "qe-firmware: firmware '%s' for %u V%u.%u\n", firmware->id, be16_to_cpu(firmware->soc.model), firmware->soc.major, firmware->soc.minor); else printk(KERN_INFO "qe-firmware: firmware '%s'\n", firmware->id); /* * The QE only supports one microcode per RISC, so clear out all the * saved microcode information and put in the new. */ memset(&qe_firmware_info, 0, sizeof(qe_firmware_info)); strcpy(qe_firmware_info.id, firmware->id); qe_firmware_info.extended_modes = firmware->extended_modes; memcpy(qe_firmware_info.vtraps, firmware->vtraps, sizeof(firmware->vtraps)); /* Loop through each microcode. */ for (i = 0; i < firmware->count; i++) { const struct qe_microcode *ucode = &firmware->microcode[i]; /* Upload a microcode if it's present */ if (ucode->code_offset) qe_upload_microcode(firmware, ucode); /* Program the traps for this processor */ for (j = 0; j < 16; j++) { u32 trap = be32_to_cpu(ucode->traps[j]); if (trap) out_be32(&qe_immr->rsp[i].tibcr[j], trap); } /* Enable traps */ out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr)); } qe_firmware_uploaded = 1; return 0; } EXPORT_SYMBOL(qe_upload_firmware); /* * Get info on the currently-loaded firmware * * This function also checks the device tree to see if the boot loader has * uploaded a firmware already. */ struct qe_firmware_info *qe_get_firmware_info(void) { static int initialized; struct property *prop; struct device_node *qe; struct device_node *fw = NULL; const char *sprop; unsigned int i; /* * If we haven't checked yet, and a driver hasn't uploaded a firmware * yet, then check the device tree for information. */ if (initialized || qe_firmware_uploaded) return NULL; initialized = 1; /* * Newer device trees have an "fsl,qe" compatible property for the QE * node, but we still need to support older device trees. */ qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { qe = of_find_node_by_type(NULL, "qe"); if (!qe) return NULL; } /* Find the 'firmware' child node */ for_each_child_of_node(qe, fw) { if (strcmp(fw->name, "firmware") == 0) break; } of_node_put(qe); /* Did we find the 'firmware' node? */ if (!fw) return NULL; qe_firmware_uploaded = 1; /* Copy the data into qe_firmware_info*/ sprop = of_get_property(fw, "id", NULL); if (sprop) strncpy(qe_firmware_info.id, sprop, sizeof(qe_firmware_info.id) - 1); prop = of_find_property(fw, "extended-modes", NULL); if (prop && (prop->length == sizeof(u64))) { const u64 *iprop = prop->value; qe_firmware_info.extended_modes = *iprop; } prop = of_find_property(fw, "virtual-traps", NULL); if (prop && (prop->length == 32)) { const u32 *iprop = prop->value; for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++) qe_firmware_info.vtraps[i] = iprop[i]; } of_node_put(fw); return &qe_firmware_info; } EXPORT_SYMBOL(qe_get_firmware_info);