/* * arch/ppc/syslib/rheap.c * * A Remote Heap. Remote means that we don't touch the memory that the * heap points to. Normal heap implementations use the memory they manage * to place their list. We cannot do that because the memory we manage may * have special properties, for example it is uncachable or of different * endianess. * * Author: Pantelis Antoniou <panto@intracom.gr> * * 2004 (c) INTRACOM S.A. Greece. This file is licensed under * the terms of the GNU General Public License version 2. This program * is licensed "as is" without any warranty of any kind, whether express * or implied. */ #include <linux/types.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/slab.h> #include <asm/rheap.h> /* * Fixup a list_head, needed when copying lists. If the pointers fall * between s and e, apply the delta. This assumes that * sizeof(struct list_head *) == sizeof(unsigned long *). */ static inline void fixup(unsigned long s, unsigned long e, int d, struct list_head *l) { unsigned long *pp; pp = (unsigned long *)&l->next; if (*pp >= s && *pp < e) *pp += d; pp = (unsigned long *)&l->prev; if (*pp >= s && *pp < e) *pp += d; } /* Grow the allocated blocks */ static int grow(rh_info_t * info, int max_blocks) { rh_block_t *block, *blk; int i, new_blocks; int delta; unsigned long blks, blke; if (max_blocks <= info->max_blocks) return -EINVAL; new_blocks = max_blocks - info->max_blocks; block = kmalloc(sizeof(rh_block_t) * max_blocks, GFP_KERNEL); if (block == NULL) return -ENOMEM; if (info->max_blocks > 0) { /* copy old block area */ memcpy(block, info->block, sizeof(rh_block_t) * info->max_blocks); delta = (char *)block - (char *)info->block; /* and fixup list pointers */ blks = (unsigned long)info->block; blke = (unsigned long)(info->block + info->max_blocks); for (i = 0, blk = block; i < info->max_blocks; i++, blk++) fixup(blks, blke, delta, &blk->list); fixup(blks, blke, delta, &info->empty_list); fixup(blks, blke, delta, &info->free_list); fixup(blks, blke, delta, &info->taken_list); /* free the old allocated memory */ if ((info->flags & RHIF_STATIC_BLOCK) == 0) kfree(info->block); } info->block = block; info->empty_slots += new_blocks; info->max_blocks = max_blocks; info->flags &= ~RHIF_STATIC_BLOCK; /* add all new blocks to the free list */ for (i = 0, blk = block + info->max_blocks; i < new_blocks; i++, blk++) list_add(&blk->list, &info->empty_list); return 0; } /* * Assure at least the required amount of empty slots. If this function * causes a grow in the block area then all pointers kept to the block * area are invalid! */ static int assure_empty(rh_info_t * info, int slots) { int max_blocks; /* This function is not meant to be used to grow uncontrollably */ if (slots >= 4) return -EINVAL; /* Enough space */ if (info->empty_slots >= slots) return 0; /* Next 16 sized block */ max_blocks = ((info->max_blocks + slots) + 15) & ~15; return grow(info, max_blocks); } static rh_block_t *get_slot(rh_info_t * info) { rh_block_t *blk; /* If no more free slots, and failure to extend. */ /* XXX: You should have called assure_empty before */ if (info->empty_slots == 0) { printk(KERN_ERR "rh: out of slots; crash is imminent.\n"); return NULL; } /* Get empty slot to use */ blk = list_entry(info->empty_list.next, rh_block_t, list); list_del_init(&blk->list); info->empty_slots--; /* Initialize */ blk->start = NULL; blk->size = 0; blk->owner = NULL; return blk; } static inline void release_slot(rh_info_t * info, rh_block_t * blk) { list_add(&blk->list, &info->empty_list); info->empty_slots++; } static void attach_free_block(rh_info_t * info, rh_block_t * blkn) { rh_block_t *blk; rh_block_t *before; rh_block_t *after; rh_block_t *next; int size; unsigned long s, e, bs, be; struct list_head *l; /* We assume that they are aligned properly */ size = blkn->size; s = (unsigned long)blkn->start; e = s + size; /* Find the blocks immediately before and after the given one * (if any) */ before = NULL; after = NULL; next = NULL; list_for_each(l, &info->free_list) { blk = list_entry(l, rh_block_t, list); bs = (unsigned long)blk->start; be = bs + blk->size; if (next == NULL && s >= bs) next = blk; if (be == s) before = blk; if (e == bs) after = blk; /* If both are not null, break now */ if (before != NULL && after != NULL) break; } /* Now check if they are really adjacent */ if (before != NULL && s != (unsigned long)before->start + before->size) before = NULL; if (after != NULL && e != (unsigned long)after->start) after = NULL; /* No coalescing; list insert and return */ if (before == NULL && after == NULL) { if (next != NULL) list_add(&blkn->list, &next->list); else list_add(&blkn->list, &info->free_list); return; } /* We don't need it anymore */ release_slot(info, blkn); /* Grow the before block */ if (before != NULL && after == NULL) { before->size += size; return; } /* Grow the after block backwards */ if (before == NULL && after != NULL) { after->start = (int8_t *)after->start - size; after->size += size; return; } /* Grow the before block, and release the after block */ before->size += size + after->size; list_del(&after->list); release_slot(info, after); } static void attach_taken_block(rh_info_t * info, rh_block_t * blkn) { rh_block_t *blk; struct list_head *l; /* Find the block immediately before the given one (if any) */ list_for_each(l, &info->taken_list) { blk = list_entry(l, rh_block_t, list); if (blk->start > blkn->start) { list_add_tail(&blkn->list, &blk->list); return; } } list_add_tail(&blkn->list, &info->taken_list); } /* * Create a remote heap dynamically. Note that no memory for the blocks * are allocated. It will upon the first allocation */ rh_info_t *rh_create(unsigned int alignment) { rh_info_t *info; /* Alignment must be a power of two */ if ((alignment & (alignment - 1)) != 0) return ERR_PTR(-EINVAL); info = kmalloc(sizeof(*info), GFP_KERNEL); if (info == NULL) return ERR_PTR(-ENOMEM); info->alignment = alignment; /* Initially everything as empty */ info->block = NULL; info->max_blocks = 0; info->empty_slots = 0; info->flags = 0; INIT_LIST_HEAD(&info->empty_list); INIT_LIST_HEAD(&info->free_list); INIT_LIST_HEAD(&info->taken_list); return info; } /* * Destroy a dynamically created remote heap. Deallocate only if the areas * are not static */ void rh_destroy(rh_info_t * info) { if ((info->flags & RHIF_STATIC_BLOCK) == 0 && info->block != NULL) kfree(info->block); if ((info->flags & RHIF_STATIC_INFO) == 0) kfree(info); } /* * Initialize in place a remote heap info block. This is needed to support * operation very early in the startup of the kernel, when it is not yet safe * to call kmalloc. */ void rh_init(rh_info_t * info, unsigned int alignment, int max_blocks, rh_block_t * block) { int i; rh_block_t *blk; /* Alignment must be a power of two */ if ((alignment & (alignment - 1)) != 0) return; info->alignment = alignment; /* Initially everything as empty */ info->block = block; info->max_blocks = max_blocks; info->empty_slots = max_blocks; info->flags = RHIF_STATIC_INFO | RHIF_STATIC_BLOCK; INIT_LIST_HEAD(&info->empty_list); INIT_LIST_HEAD(&info->free_list); INIT_LIST_HEAD(&info->taken_list); /* Add all new blocks to the free list */ for (i = 0, blk = block; i < max_blocks; i++, blk++) list_add(&blk->list, &info->empty_list); } /* Attach a free memory region, coalesces regions if adjuscent */ int rh_attach_region(rh_info_t * info, void *start, int size) { rh_block_t *blk; unsigned long s, e, m; int r; /* The region must be aligned */ s = (unsigned long)start; e = s + size; m = info->alignment - 1; /* Round start up */ s = (s + m) & ~m; /* Round end down */ e = e & ~m; /* Take final values */ start = (void *)s; size = (int)(e - s); /* Grow the blocks, if needed */ r = assure_empty(info, 1); if (r < 0) return r; blk = get_slot(info); blk->start = start; blk->size = size; blk->owner = NULL; attach_free_block(info, blk); return 0; } /* Detatch given address range, splits free block if needed. */ void *rh_detach_region(rh_info_t * info, void *start, int size) { struct list_head *l; rh_block_t *blk, *newblk; unsigned long s, e, m, bs, be; /* Validate size */ if (size <= 0) return ERR_PTR(-EINVAL); /* The region must be aligned */ s = (unsigned long)start; e = s + size; m = info->alignment - 1; /* Round start up */ s = (s + m) & ~m; /* Round end down */ e = e & ~m; if (assure_empty(info, 1) < 0) return ERR_PTR(-ENOMEM); blk = NULL; list_for_each(l, &info->free_list) { blk = list_entry(l, rh_block_t, list); /* The range must lie entirely inside one free block */ bs = (unsigned long)blk->start; be = (unsigned long)blk->start + blk->size; if (s >= bs && e <= be) break; blk = NULL; } if (blk == NULL) return ERR_PTR(-ENOMEM); /* Perfect fit */ if (bs == s && be == e) { /* Delete from free list, release slot */ list_del(&blk->list); release_slot(info, blk); return (void *)s; } /* blk still in free list, with updated start and/or size */ if (bs == s || be == e) { if (bs == s) blk->start = (int8_t *)blk->start + size; blk->size -= size; } else { /* The front free fragment */ blk->size = s - bs; /* the back free fragment */ newblk = get_slot(info); newblk->start = (void *)e; newblk->size = be - e; list_add(&newblk->list, &blk->list); } return (void *)s; } void *rh_alloc(rh_info_t * info, int size, const char *owner) { struct list_head *l; rh_block_t *blk; rh_block_t *newblk; void *start; /* Validate size */ if (size <= 0) return ERR_PTR(-EINVAL); /* Align to configured alignment */ size = (size + (info->alignment - 1)) & ~(info->alignment - 1); if (assure_empty(info, 1) < 0) return ERR_PTR(-ENOMEM); blk = NULL; list_for_each(l, &info->free_list) { blk = list_entry(l, rh_block_t, list); if (size <= blk->size) break; blk = NULL; } if (blk == NULL) return ERR_PTR(-ENOMEM); /* Just fits */ if (blk->size == size) { /* Move from free list to taken list */ list_del(&blk->list); blk->owner = owner; start = blk->start; attach_taken_block(info, blk); return start; } newblk = get_slot(info); newblk->start = blk->start; newblk->size = size; newblk->owner = owner; /* blk still in free list, with updated start, size */ blk->start = (int8_t *)blk->start + size; blk->size -= size; start = newblk->start; attach_taken_block(info, newblk); return start; } /* allocate at precisely the given address */ void *rh_alloc_fixed(rh_info_t * info, void *start, int size, const char *owner) { struct list_head *l; rh_block_t *blk, *newblk1, *newblk2; unsigned long s, e, m, bs, be; /* Validate size */ if (size <= 0) return ERR_PTR(-EINVAL); /* The region must be aligned */ s = (unsigned long)start; e = s + size; m = info->alignment - 1; /* Round start up */ s = (s + m) & ~m; /* Round end down */ e = e & ~m; if (assure_empty(info, 2) < 0) return ERR_PTR(-ENOMEM); blk = NULL; list_for_each(l, &info->free_list) { blk = list_entry(l, rh_block_t, list); /* The range must lie entirely inside one free block */ bs = (unsigned long)blk->start; be = (unsigned long)blk->start + blk->size; if (s >= bs && e <= be) break; } if (blk == NULL) return ERR_PTR(-ENOMEM); /* Perfect fit */ if (bs == s && be == e) { /* Move from free list to taken list */ list_del(&blk->list); blk->owner = owner; start = blk->start; attach_taken_block(info, blk); return start; } /* blk still in free list, with updated start and/or size */ if (bs == s || be == e) { if (bs == s) blk->start = (int8_t *)blk->start + size; blk->size -= size; } else { /* The front free fragment */ blk->size = s - bs; /* The back free fragment */ newblk2 = get_slot(info); newblk2->start = (void *)e; newblk2->size = be - e; list_add(&newblk2->list, &blk->list); } newblk1 = get_slot(info); newblk1->start = (void *)s; newblk1->size = e - s; newblk1->owner = owner; start = newblk1->start; attach_taken_block(info, newblk1); return start; } int rh_free(rh_info_t * info, void *start) { rh_block_t *blk, *blk2; struct list_head *l; int size; /* Linear search for block */ blk = NULL; list_for_each(l, &info->taken_list) { blk2 = list_entry(l, rh_block_t, list); if (start < blk2->start) break; blk = blk2; } if (blk == NULL || start > (blk->start + blk->size)) return -EINVAL; /* Remove from taken list */ list_del(&blk->list); /* Get size of freed block */ size = blk->size; attach_free_block(info, blk); return size; } int rh_get_stats(rh_info_t * info, int what, int max_stats, rh_stats_t * stats) { rh_block_t *blk; struct list_head *l; struct list_head *h; int nr; switch (what) { case RHGS_FREE: h = &info->free_list; break; case RHGS_TAKEN: h = &info->taken_list; break; default: return -EINVAL; } /* Linear search for block */ nr = 0; list_for_each(l, h) { blk = list_entry(l, rh_block_t, list); if (stats != NULL && nr < max_stats) { stats->start = blk->start; stats->size = blk->size; stats->owner = blk->owner; stats++; } nr++; } return nr; } int rh_set_owner(rh_info_t * info, void *start, const char *owner) { rh_block_t *blk, *blk2; struct list_head *l; int size; /* Linear search for block */ blk = NULL; list_for_each(l, &info->taken_list) { blk2 = list_entry(l, rh_block_t, list); if (start < blk2->start) break; blk = blk2; } if (blk == NULL || start > (blk->start + blk->size)) return -EINVAL; blk->owner = owner; size = blk->size; return size; } void rh_dump(rh_info_t * info) { static rh_stats_t st[32]; /* XXX maximum 32 blocks */ int maxnr; int i, nr; maxnr = sizeof(st) / sizeof(st[0]); printk(KERN_INFO "info @0x%p (%d slots empty / %d max)\n", info, info->empty_slots, info->max_blocks); printk(KERN_INFO " Free:\n"); nr = rh_get_stats(info, RHGS_FREE, maxnr, st); if (nr > maxnr) nr = maxnr; for (i = 0; i < nr; i++) printk(KERN_INFO " 0x%p-0x%p (%u)\n", st[i].start, (int8_t *) st[i].start + st[i].size, st[i].size); printk(KERN_INFO "\n"); printk(KERN_INFO " Taken:\n"); nr = rh_get_stats(info, RHGS_TAKEN, maxnr, st); if (nr > maxnr) nr = maxnr; for (i = 0; i < nr; i++) printk(KERN_INFO " 0x%p-0x%p (%u) %s\n", st[i].start, (int8_t *) st[i].start + st[i].size, st[i].size, st[i].owner != NULL ? st[i].owner : ""); printk(KERN_INFO "\n"); } void rh_dump_blk(rh_info_t * info, rh_block_t * blk) { printk(KERN_INFO "blk @0x%p: 0x%p-0x%p (%u)\n", blk, blk->start, (int8_t *) blk->start + blk->size, blk->size); }